Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-21T14:06:27.886Z Has data issue: false hasContentIssue false

Polytype Identification in Trioctahedral 1:1 Layer Silicates Using Electron Diffraction with Application to a Chronstedtite That was Synthesized Using Metallic Iron-Clay Interactions

Published online by Cambridge University Press:  01 January 2024

Jiří Hybler*
Affiliation:
Institute of Physics, Academy of Sciences of Czech Republic, v.v.i., Na Slovance 2, CZ-18221 Praha 8, Czech Republic
Mariana Klementová
Affiliation:
Institute of Physics, Academy of Sciences of Czech Republic, v.v.i., Na Slovance 2, CZ-18221 Praha 8, Czech Republic
Markéta Jarošová
Affiliation:
Institute of Physics, Academy of Sciences of Czech Republic, v.v.i., Na Slovance 2, CZ-18221 Praha 8, Czech Republic
Isabella Pignatelli
Affiliation:
GeoRessources, UMR 7359 CNRS, Université de Lorraine, Campus Aiguillettes, 54506 Vandœuvre-lès-Nancy, France
Régine Mosser-Ruck
Affiliation:
GeoRessources, UMR 7359 CNRS, Université de Lorraine, Campus Aiguillettes, 54506 Vandœuvre-lès-Nancy, France
Slavomil Ďurovič
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-84236 Bratislava, Slovakia
*
*E-mail address of corresponding author: hybler@fzu.cz

Abstract

The present study presents a generalized procedure to accurately identify trioctahedral 1:1 layer silicates. The reciprocal space (RS) sections were obtained by the precession method by “unwarping” frames that were recorded using diffractometers with area detectors or from electron diffraction tomography (EDT) patterns. Distributions of subfamily reflections along the reciprocal lattice rows [21̄l]* / [11l]* / [1̄2l]* in (2hh̄lhex)* / (hhlhex)* / (h̄2hlhex)* RS planes were used to determine OD (Ordered — Disordered) subfamilies (Bailey’s groups A, B, C, D). The distributions along the [10l]* / [01l]* / [1̄1l]* rows in the (h0lhex)* / (0klhex)* / (h̄hlhex) RS planes allow determination of the polytypes. The use of traditional identification diagrams for the determination of OD subfamilies and polytypes was generalized in order to identify monoclinic and orthorhombic MDO (Maximum Degree of Order) polytypes. In these polytypes, the distribution of characteristic reflections along rows is different in RS sections that are perpendicular and diagonal to the symmetry plane of the polytype. The identification diagram of non-MDO polytype 6T2 is also presented. The method was applied to the identification of single crystals of cronstedtite that were synthesized during interactions of Fe metal with a natural claystone during experiments over a temperature range of 90-60°C. Conical and pyramidal crystals with a maximum size of a few micrometers were studied using electron diffraction tomography (EDT). The following polytypes were identified: 1M, 2M1, an apparently ninetuple polytype that was interpreted as triclinic 3A (group A), 1T (group C), and disordered crystals of group D. The 1M polytype was the most abundant. Some 1M crystals were twinned by reticular merohedry with a 120° rotation along the chex axis as the twin operation. The 2M1 occurred as isolated crystals as well as in mixed crystals. Intergrown 1T and 1M polytypes of the C and A group, respectively, were identified in one mixed crystal. The possible stacking sequence and the 3A polytype identification diagram was presented and discussed. Example RS sections of all polytypes were identified and demonstrated.

Type
Article
Copyright
Copyright © Clay Minerals Society 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, C.S. and Bailey, S.W. (1981) A new cation ordering pattern in amesite-2H 2. American Mineralogist, 66, 185195.Google Scholar
Bailey, S.W. (1969) Polytypism of trioctahedral 1: 1 layer silicates. Clays and Clay Minerals, 17, 355371.CrossRefGoogle Scholar
Bailey, S.W. (1988) Polytypism of 1: 1 layer silicates. Pp. 127 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Barber, D.J. (1981) Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites. Geochimica et Cosmochimica Acta, 45, 945970.CrossRefGoogle Scholar
Brigatti, M.F., Galli, E., Medici, L., and Poppi, L. (1997) Crystal structure of aluminian lizardite-2H 2. American Mineralogist, 82, 931935.CrossRefGoogle Scholar
Browning, L.B., McSween, H.Y. Jr., and Zolensky, M.E. (1996) Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 60, 26212633.CrossRefGoogle Scholar
Buerger, M. J. (1964) The Precession Method in X-ray Crystallography. John Willey & sons, Inc., New York-London-Sydney.Google Scholar
Burbine, T.H. and Burns, R.G. (1994) Questions concerning the oxidation of the ferrous iron in carbonaceous chondrites. in: Abstracts of the 25 th Lunar and Planetary Science Conference, held in Houston, Texas, 1418 March 1994, p.199–200.Google Scholar
Dornberger-Schiff, K. and Ďurovič, S. (1975a) OD-interpretation of kaolinite-type structure-I: Symmetry of kaolinite packets and their stacking possibilities. Clays and Clay Minerals, 23, 219229.CrossRefGoogle Scholar
Dornberger-Schiff, K. and Ďurovič, S. (1975b) OD-interpretation of kaolinite-type structures - II: The regular polytypes (MDO-polytypes) and their derivation. Clays and Clay Minerals, 23, 231246.CrossRefGoogle Scholar
Ďurovič, S. (1981) OD-Charakter, Polytypie und Identifikation von Schichtsilikaten. Fortschritte der Mineralogie, 59, 191226.Google Scholar
Ďurovič, S. (1997) Cronstedtite-1Mand coexistence of 1M and 3T polytypes. Ceramics-Silikáty, 41, 98104.Google Scholar
Dušek, M., Petříček, V., Palatinus, L., Rohlíček, J., Fejfarová, K., Eigner, V., Kučeráková, M., Poupon, M., and Henriques, M. (2017) JANA2006 Cookbook, Version October 2017, Institute of Physics, Academy of Sciences of the Czech Republic, 571 pp. (downloadable from the page ).Google Scholar
Ferreira, T., and Rasband, W. (2016) ImageJ, Program for Image processing and Analysis in Java. Accessed 29/06/2016 at the site: .Google Scholar
Frondel, C. (1962) Polytypism in cronstedtite. American Mineralogist, 47, 781783.Google Scholar
Geiger, C.A., Henry, D.L., Bailey, S.W., and Maj, J.J. (1983) Crystal structure of cronstedtite-2H 2. Clays and Clay Minerals, 31, 97108.CrossRefGoogle Scholar
Hall, S.H. and Bailey, S.W. (1979) Cation ordering pattern in amesite. Clays and Clay Minerals, 27, 241247.CrossRefGoogle Scholar
Hybler, J. (2014) Refinement of cronstedtite-1 M. Acta Crystallographica, B70, 963972.Google Scholar
Hybler, J. (2016) Crystal structure of cronstedtite-6T 2, a non-MDO polytype. European Journal of Mineralogy, 28, 777788, DOI: 10.1127/ejm/2016/0028-2541.CrossRefGoogle Scholar
Hybler, J., Petříček, V., Ďurovič, S., and Smrčok, L. (2000) Refinement of the crystal structure of cronstedtite-1T. Clays and Clay Minerals, 48, 331338.CrossRefGoogle Scholar
Hybler, J., Petříček, V., Fábry, J., and Ďurovič, S. (2002) Refinement of the crystal structure of cronstedtite-2H 2. Clays and Clay Minerals, 50, 601613.CrossRefGoogle Scholar
Hybler, J., Sejkora, J., and Venclík, V. (2016) Polytypism of cronstedtite from Pohled, Czech Republic. European Journal of Mineralogy, 28, 765775, DOI: 10.1127/ejm/2016/0028-2532.CrossRefGoogle Scholar
Hybler, J., Števko, M., and Sejkora, J. (2017) Polytypism of cronstedtite from Nižná Slaná, Slovakia. European Journal of Mineralogy, 29, 9199, DOI: 10.1127/ejm/2017/0029-2582.CrossRefGoogle Scholar
Hybler, J. and Sejkora, J. (2017) Polytypism of cronstedtite from Chyňava, Czech Republic. Journal of Geosciences, 62, 137146, DOI: 10.3190/jgeosci.239CrossRefGoogle Scholar
Kogure, T., Hybler, J., and Ďurovič, S. (2001) A HRTEM study of cronstedtite: Determination of polytypes and layer polarity in trioctahedral 1: 1 phyllosilicates. Clays and Clay Minerals, 49, 310317.CrossRefGoogle Scholar
Kogure, T., Hybler, J., and Yoshida, H. (2002) Coexistence of two polytypic groups in cronstedtite from Lostwithiel England. Clays and Clay Minerals, 50, 504513.CrossRefGoogle Scholar
Lauretta, D.S., Hua, X., and Buseck, P.R. (2000) Mineralogy of fine-grained rims in the ALH 81002 CM chondrite. Geochimica et Cosmochimica Acta, 64, 32633273.CrossRefGoogle Scholar
López García, J.A., Manteca, J.I., Prieto, A.C., and Calvo, B. (1992) Primera aparición en Espana de cronstedtita. Caracterización estructural. Boletín de la Sociedad Española de Mineralogía, 15, 2125 (in Spanish).Google Scholar
Mellini, M. (1982) The crystal structure of lizardite-1T: Hydrogen bonds and polytypism. American Mineralogist, 67, 587598.Google Scholar
Mellini, M. and Viti, C. (1994) Crystal structure of lizardite-1T from Elba, Italy. American Mineralogist, 79, 11941198.Google Scholar
Mellini, M. and Zanazzi, P.F. (1987) Crystal structures of lizardite-1T and lizardite-2H 1 from Coli, Italy. American Mineralogist, 72, 943948.Google Scholar
Mikloš, D. (1975) Symmetry and Polytypism of Trioctahedral Kaolin-type Minerals. Ph.D. thesis. Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia, 144 pp. (in Slovak).Google Scholar
Müller, W.F., Kurat, G., and Kracher, A. (1979) Chemical and crystallographical study of cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite. Tschermaks Mineralogische und Petrographische Mitteilungen, 26, 293304.CrossRefGoogle Scholar
Miyahara, M., Uehara, S., Ohtani, E., Nagase, T., Nishijima, M., Vashaei, Z., and Kitagawa, R. (2008) The anatomy of altered chondrules and FGRs covering them in a CM chondrite by FIB-TEM-STEM. Lunar and Planetary Science, XXXIX, p. 1194.Google Scholar
Novák, F. and Hoffman, V. (1956) Occurrence of new minerals in the ore district of the northern part of the Iron Mts. Rozpravy ČSAV, Řada Matematicko Přírodních Věd, 66, 3148 (in Czech with an English abstract).Google Scholar
Palatinus, L. (2011) PETS - Program For Analysis of Electron Diffraction Data, Institute of Physics, Prague. (The latest version is downloadable from the page: ).Google Scholar
Palatinus, L. Jacob, Cuvillier, P., Klementová, M., Sinkler, W., and Marks, L.D. (2013) Structure refinement from precession electron diffraction data. Acta Crystallographica, A69, 171188.CrossRefGoogle Scholar
Petříček, V., Dušek, M., and Palatinus, L. (2014) JANA2006, Crystallographic computer program for standard, modulated and composite structures. Zeitschrift für Kristallographie 229, 345352, DOI: 10.1515/zkri-2014-1737.CrossRefGoogle Scholar
Pignatelli, I., Mugnaioli, E., Hybler, J., Mosser-Ruck, R., Cathelineau, M., and Michau, N. (2013) A multi-technique characterisation of cronstedtite synthetized by iron-clay interaction in a step by step cooling procedure. Clays and Clay Minerals, 61, 277289.CrossRefGoogle Scholar
Pignatelli, I., Bourdelle, F., Bartier, D., Mosser-Ruck, R., Truche, L., Mugnaioli, E., and Michau, N. (2014) Iron-clay interactions: Detailed study of the mineralogical transformation of claystone with emphasis on the formation of ironrich T-O phyllosilicates in a step-by-step experiment from 90° to 40°C. Chemical Geology, 387, 111.CrossRefGoogle Scholar
Pignatelli, I., Marrochi, Y., Vacher, L.G., Delon, R., and Gounelle, M. (2016) Multiple precursors of secondary mineralogical assemblages in CM chondrites. Meteoritic and Planetary Science, 51, 785805, DOI: 10.1111/maps. 12625.CrossRefGoogle Scholar
Pignatelli, I., Marrocchi, Y., Mugnaioli, E., Bourdelle, F., and Gounelle, M. (2017) Mineralogical, crystallographic and redox features of the earliest stages of fluid alteration in CM chondrites. Geochimica et Cosmochimica Acta, 209, 106122.CrossRefGoogle Scholar
Pignatelli, I., Mugnaioli, E., and Marrocchi, Y. (2018) Cronstedtite polytypes in the Paris meteorite. European Journal of Mineralogy, 30, 349354, DOI: 10.1127/ejm/2018/0030-2713CrossRefGoogle Scholar
Rigaku Oxford Diffraction (2015) CrysAlis Pro, Data Collection and Data Reduction GUI. Version 171.38.41qGoogle Scholar
Smrčok, L. and Weiss, Z. (1993) DIFK91: A program for the modelling of powder diffraction patterns on a PC. Journal of Applied Crystallography. 26, 140141.CrossRefGoogle Scholar
Smrčok, L., Ďurovič, S., Petříček, V., and Weiss, Z. (1994) Refinement of the crystal structure of cronstedtite-3T. Clays and Clay Minerals, 42, 544551.CrossRefGoogle Scholar
Steadman, R. (1964) The structure of trioctahedral kaolin-type silicates. Acta Crystallographica, 17, 924927.CrossRefGoogle Scholar
Steadman, R. and Nuttall, P.M. (1963) Polymorphism in cronstedtite. Acta Crystallographica, 16, 18.CrossRefGoogle Scholar
Steadman, R. and Nuttall, P.M. (1964) Further polymorphism in cronstedtite. Acta Crystallographica, 17, 404406.CrossRefGoogle Scholar
Steinmann, J.J. (1820) Chemische Untersuchung des Cronstedtit's, eines neuen Fossils von Príbram in Böhmen. Gottlieb Haase, Prague, 47 pp. (in German).Google Scholar
Steinmann, J.J. (1821) Chemische Untersuchung des Cronstedtit's, eines neuen Fossils von Příbram in Bohmen. Journal für Chemie und Physik, 32, 69100 (in German).Google Scholar
Wahle, M.W., Bujnowski, T.J., Guggenheim, S., and Kogure, T. (2010) Guidottiite, the Mn-analogue of cronstedtite: A new serpentine-group mineral from South Africa. Clays and Clay Minerals 58, 364376, DOI: 10.1346/CCMN.2010.0580307.CrossRefGoogle Scholar
Weiss, Z. and Kužvart, M. (2005) Clay Minerals, their Nanostructure and Use. Charles University, Karolinum publishing house, Prague, 281 pp. (in Czech).Google Scholar
Zega, T.J. and Buseck, P.R. (2003) Fine-grained-rim mineralogy of the Cold Bokkeveld CM chondrite. Geochimica et Cosmochimica Acta, 67, 17111721.CrossRefGoogle Scholar
Zheng, H. and Bailey, S.W. (1997) Refinement of an amesite-2H 1 polytype from Potmasburg, South Africa. Clays and Clay Minerals, 45, 301310.CrossRefGoogle Scholar
Zhukhlistov, A.P. and Zvyagin, B.B. (1998) Crystal structure of lizardite-1T from electron diffractometry data. Kristallographiya, 43, 1009–10014 (in Russian), also in: Crystallography Reports, 43, 950955.Google Scholar