Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-22T22:14:36.448Z Has data issue: false hasContentIssue false

Petro-Mineralogical and Geochemical Evaluation of Glauconitic Rocks of the Ukra Member (Bhuj Formation), Kutch Basin, India

Published online by Cambridge University Press:  01 January 2024

Saurabh Shekhar
Affiliation:
CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
V. Kumari
Affiliation:
Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
S. Sinha
Affiliation:
CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India
D. Mishra
Affiliation:
CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India
A. Agrawal
Affiliation:
CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India
K. K. Sahu*
Affiliation:
CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

Abstract

Glauconites occurring within the Ukra Member of Kutch Basin have remained unexplored in terms of their economic significance. The present study aimed to present a detailed physicochemical characterization of glauconite occurring in the siliciclastic rocks of Guneri and Umarsar area of the Kutch district, Gujarat, India to explore their economic potential. The study involved an integrated petrographical, mineralogical, and geochemical investigation of glauconitic rocks to highlight the occurrence, nature, and maturity of glauconite. The characterization was carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), and electron probe microanalysis (EPMA) combined with energy dispersive X-ray (EDX), Field emission gun scanning electron microscopy (FEG-SEM), Fourier-transform infrared spectroscopy (FTIR), and inductively coupled plasma mass spectroscopy (ICP-MS). Petrographic and bulk XRD analysis revealed that the glauconite occurs as green pellets constituting ~30 and 40% of the glauconitic sandstone and shale, respectively. Whole-rock analysis showed that the value of K2O varies considerably from 3.93 wt.% (sandstone) to 5.63 wt.% (shale). Mineral chemistry indicated the distinctive chemical composition of glauconite pellets containing 7.4–8.4 wt.% of K2O. The parameters, such as the distance between the (001) and (020) peaks and the large K2O content (~8 wt.%) of the glauconite fraction reflect an evolved to highly evolved stage of maturation. The morphological and spectral signatures further support the high degree of maturation in glauconites. Trace-element analysis implied that the glauconitic sandstone and shale contain elements such as Zn, Mn, Cu, Co, Mo, and Ni, which serve as essential micronutrients for plants. These data sets collectively constitute part of a preliminary study which is prerequisite to beneficiation, but further evaluation of its potential as a potash fertilizer also is needed.

Type
Original Paper
Copyright
Copyright © The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorosi, A. (1995). Glaucony and sequence stratigraphy: A conceptual framework of distribution in siliciclastic sequences. Journal of Sedimentary Research, 65, 419425. https://doi.org/10.1306/D4268275-2B26-11D7-8648000102C1865DGoogle Scholar
Amorosi, A. (2012). The occurrence of glaucony in the stratigraphic record: distribution patterns and sequence-stratigraphic significance. International Association of Sedimentologists. Special Publication, 45, 3754.Google Scholar
Amorosi, A. (2013). The occurrence of glaucony in the stratigraphic record: distribution patterns and sequence stratigraphic significance. In: Morad, S., Ketzer, M., de Ros, L.F. (Eds.). Linking Diagenesis to Sequence Stratigraphy, 45, 3753. https://doi.org/10.1002/9781118485347.ch2CrossRefGoogle Scholar
Amorosi, A., Sammartino, I., & Tateo, F. (2007). Evolution patterns of glaucony maturity: a mineralogical and geochemical approach. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 13641374.CrossRefGoogle Scholar
Bailey, S. W. (1980). Summary of recommendations of AIPEA nomenclature committee. Clays and Clay Minerals, 28, 7378. https://doi.org/10.1346/CCMN.1980.0280114Google Scholar
Baldermann, A., Grathof, G. H., & Nickel, C. (2012). Micromilieu-controlled glauconitization in fecal pellets at Oker (Central Germany). Clay Minerals, 47, 513538. https://doi.org/10.1180/claymin.2012.047.4.09CrossRefGoogle Scholar
Baldermann, A., Warr, L. N., Grathof, G. H., & Dietzel, M. (2013). The rate and mechanism of deep-sea glauconite formation at the Ivory Coast-Ghana marginal ridge. Clays and Clay Minerals, 61, 258276. https://doi.org/10.1346/CCMN.2013.0610307CrossRefGoogle Scholar
Baldermann, A., Dietzel, M., Mavromatis, V., Mittermayr, F., Warr, L. N., & Wemmer, K. (2017). The role of Fe on the formation and diagenesis of interstratifed glauconitesmectite and illite-smectite: a case study of Upper Cretaceous shallow-water carbonates. Chemical Geology, 453, 2134. https://doi.org/10.1016/j.chemgeo.2017.02.008CrossRefGoogle Scholar
Banerjee, S., Kumar, S. J., & Eriksson, P. G. (2008). Mg-rich ferric illite in marine transgressive and high stand system tracts: examples from the Palaeoproterozoic Semri Group, central India. Precambrian Research, 162, 212226. https://doi.org/10.1016/j.precamres.2007.07.018CrossRefGoogle Scholar
Banerjee, S., Chattoraj, S. L., Saraswati, P. K., Dasgupta, S., & Sarkar, U. (2012a). Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India. Marine and Petroleum Geology, 30, 144160. https://doi.org/10.1016/j.marpetgeo.2011.10.008CrossRefGoogle Scholar
Banerjee, S., Chattoraj, S. L., Saraswati, P. K., Dasgupta, S., Sarkar, U., & Bumby, A. (2012b). The origin and maturation of lagoonal glauconites: a case study from the Oligocene Maniyara Fort Formation, western Kutch. Journal of the Geological Society of India, 47, 357371. https://doi.org/10.1002/gj.1345Google Scholar
Banerjee, S., Mondal, S., Chakraborty, P. P., & Meena, S. S. (2015). Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: Example from Bhalukona Formation, Chhattisgarh basin, India. Precambrian Research, 271, 3348. https://doi.org/10.1016/j.precamres.2015.09.026CrossRefGoogle Scholar
Banerjee, S., Bansal, U., Pande, K., & Meena, S. S. (2016a). Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: Implications for evaluation of stratigraphic condensation. Sedimentary Geology, 331, 1229. https://doi.org/10.1016/j.sedgeo.2015.10.012CrossRefGoogle Scholar
Banerjee, S., Bansal, U., & Thorat, A. (2016b). A review on palaeogeographic implications and temporal variation in glaucony composition. Palaeogeography, Palaeoclimatology, Palaeoecology, 5, 4371. https://doi.org/10.1016/j.jop.2015.12.001Google Scholar
Banerjee, S., Farouk, S., Nagm, E., Choudhury, T. R., & Meena, S. S. (2019). High Mg-glauconite in the Campanian Duwi Formation of Abu Tartur Plateau, Egypt and its implications. Journal of African Earth Sciences, 156, 1225. https://doi.org/10.1016/j.jafrearsci.2019.05.001CrossRefGoogle Scholar
Bansal, U., Banerjee, S., Pande, K., Arora, A., & Meena, S. S. (2017). The distinctive compositional evolution of glauconite in the Cretaceous Ukra Hill Member (Kutch basin, India) and its implications. Marine and Petroleum Geology, 82, 97117. https://doi.org/10.1016/j.marpetgeo.2017.01.017CrossRefGoogle Scholar
Bansal, U., Banerjee, S., Ruidas, D. K., & Pande, K. (2018). Origin and geochemical characterization of Maastrichtian glauconites in the Lameta Formation, Central India. Palaeogeography, Palaeoclimatology, Palaeoecology, 7, 99116. https://doi.org/10.1016/j.jop.2017.12.001Google Scholar
Bansal, U., Banerjee, S., & Nagendra, R. (2020). Is the rarity of glauconite in Precambrian Bhima Basin in India related to its chloritization? Precambrian Research, 336, 105509. https://doi.org/10.1016/j.precamres.2019.105509CrossRefGoogle Scholar
Bentor, Y. K., & Kastner, M. (1965). Notes on the mineralogy and origin of glauconite. Journal of Sedimentary Petrology, 35, 155166. https://doi.org/10.1306/74D712122B21-11D7-8648000102C1865DGoogle Scholar
Bhatnagar, J. P., & Awasthi, S. K. (2000). Prevention of food adulteration act (act no. 37 of 1954) along with central & state rules (as amended for 1999). Ashoka Law House.Google Scholar
Bishop, J. L., Lane, M. D., Dyar, M. D., & Brown, A. J. (2008). Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite, serpentines, chlorites and micas. Clay Minerals, 43, 3554. https://doi.org/10.1180/claymin.2008.043.1.03CrossRefGoogle Scholar
Biswas, S. K. (1977). Mesozoic rock-stratigraphy of Kutch, Gujarat. Quarterly Journal of the Geological Mineralogical and Metallurgical Society of India, 49, 151. https://doi.org/10.17491/cgsi/2016/105405Google Scholar
Biswas, S. K. (1987). Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135, 307327. https://doi.org/10.1016/0040-1951(87)90115-6CrossRefGoogle Scholar
Biswas, S. K. (2005). A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Current Science, 88, 15921600.Google Scholar
Burst, J. F. (1958). Mineral heterogeneity in glauconite pellets. American Mineralogist, 43, 481497.Google Scholar
Castro, L., & Tourn, S. (2003). Direct application of phosphate rocks and glauconite as alternative sources of fertilizer in Argentina. Exploration and Mining Geology, 12, 7178.CrossRefGoogle Scholar
Chamley, H. (1989). Clay Sedimentology. Springer-Verlag. https://doi.org/10.1007/978-3-642-85916-8CrossRefGoogle Scholar
Chattoraj, S. L., Banerjee, S., & Saraswati, P. K. (2009). Glauconites from the Late Palaeocene-Early Eocene Naredi Formation, western Kutch and their genetic implications. Journal of the Geological Society of India, 73, 567574. https://doi.org/10.1007/s12594-009-0040-xCrossRefGoogle Scholar
Chattoraj, S. L., Banerjee, S., Meer, F. V. D., & Ray, P. K. C. (2018). Application of visible and infrared spectroscopy for the evaluation of evolved glauconite. International Journal of Applied Earth Observation and Geoinformation, 64, 301310. https://doi.org/10.1016/j.jag.2017.02.007CrossRefGoogle Scholar
Choudhuri, R., Balagopal, A. T., & Banerjee, K. C. (1973). Availability of potash from non-traditional sources. Technology., 10, 128131.Google Scholar
Dasgupta, S., Cahudhuri, A. K., & Fukuoka, M. (1990). Compositional characteristics of glauconitic alterations of K-feldspar from India and their implications. Journal of Sedimentary Petrology, 60, 277281.Google Scholar
Desai, B. G. (2013). Iconological analysis of transgressive marine tongue in prograding deltaic system: Evidences from Ukra Hill Member, Western Kachchh, India. Journal of the Geological Society of India, 82, 143152. https://doi.org/10.1007/s12594-013-0132-5CrossRefGoogle Scholar
Desai, B. G., & Saklani, R. D. (2012). Significance of the trace fossil Balanoglossites Mägdefrau, 1932 from the Lower Cretaceous Guneri member (Bhuj formation) of the Guneri dome, Kachchh, India. Swiss Journal of Palaeontology, 131, 255263. https://doi.org/10.1007/s13358-012-0045-8CrossRefGoogle Scholar
Dooley, J. H. (2006). Glauconite. In Koger, J., Trivedi, N., Barrer, J., & Krukowsky, N. (Eds.), Industrial Minerals and Rocks (pp. 495506). SME.Google Scholar
Drits, V. A., Ivanovskaya, T. A., Sakharov, B. A., Zvyagina, B. B., Derkowski, A., Gor'kova, N. V., Pokrovskaya, E. V., Savichev, A. T., & Zaitseva, T. S. (2010). Nature of the structural and crystal chemical heterogeneity of the Mg–rich glauconite (Riphean, Anabar Uplift). Lithology and Mineral Resources, 45, 555576. https://doi.org/10.1134/S0024490210060040.CrossRefGoogle Scholar
El-Habaak, G., Askalany, M., Faraghaly, M., & Abdel-Hakeem, M. (2016). The economic potential of El-Gedida glauconite deposits, El-Bahariya Oasis, Western Desert, Egypt. Journal of African Earth Sciences, 120, 186197. https://doi.org/10.1016/j.jafrearsci.2016.05.007CrossRefGoogle Scholar
Essa, M. A., Ahmed, E. A., & Kurzweil, H. (2016). Genesis, maturity and weathering of some Upper Cretaceous Egyptian glauconites: mineralogical and geochemical implications. Journal of African Earth Sciences, 124, 427446. https://doi.org/10.1016/j.jafrearsci.2016.09.036CrossRefGoogle Scholar
Fernández-Landero, S., & Fernández-Caliani, J. C. (2021). Mineralogical and Crystal-Chemical Constraints on the Glauconite-Forming Process in Neogene Sediments of the Lower Guadalquivir Basin (SW Spain). Minerals, 11, 578.CrossRefGoogle Scholar
Franzosi, C., Castro, L. N., & Celeda, A. M. (2014). Technical evaluation of glauconies as alternative potassium fertilizer from the Salamanca Formation, Patagonia, Southwest Argentina. Natural Resources Research, 23, 311320. https://doi.org/10.1007/s11053-014-9232-1CrossRefGoogle Scholar
Fürsich, F. T., & Pandey, D. K. (2003). Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic–Lower Cretaceous of Kachchh, western India. Palaeogeography, Palaeoclimatology, Palaeoecology, 193, 285309. https://doi.org/10.1016/S0031-0182(03)00233-5CrossRefGoogle Scholar
Haaland, M. M., Friesem, D. E., Miller, C. E., & Henshilwood, C. S. (2017). Heat-induced alteration of glauconitic minerals in the Middle Stone Age levels of Blombos Cave, South Africa: implications for evaluating site structure and burning events. Journal of Archaeological Science, 86, 81100. https://doi.org/10.1016/j.jas.2017.06.008CrossRefGoogle Scholar
Harder, H. (1980). Syntheses of glauconite at surface temperatures. Clays and Clay Minerals, 28, 217222. https://doi.org/10.1346/CCMN.1980.0280308CrossRefGoogle Scholar
Harding, S. C., Nash, B. P., Petersen, E. U., Ekdale, A. A., Bradbury, C. D., & Dyar, M. D. (2014). Mineralogy and geochemistry of the main glauconite bed in the middle Eocene of Texas: Paleoenvironmental Implications for the Verdine Facies. PLoS One, 9, e87656. https://doi.org/10.1371/journal.pone.0087656CrossRefGoogle ScholarPubMed
Hassan, M. S., & Baioumy, H. M. (2006). Structural and chemical alteration of glauconite under progressive acid treatment. Clays and Clay Minerals, 54, 491499. https://doi.org/10.1346/CCMN.2006.0540410CrossRefGoogle Scholar
Hower, J. (1961). Some factors concerning the nature and origin of glauconite. American Mineralogist, 46, 313334. https://doi.Google Scholar
Hower, J. M., & Gale, A. S. (1997). Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whiteclif Bay, Hampshire Basin, UK. Journal of the Geological Society, 154, 897912. https://doi.org/10.1144/gsjgs.154.5.0897Google Scholar
Innes, R. P., & Pluth, D. J. (1970). Thin Section Preparation Using an Epoxy Impregnation for Petrographic and Electron Microprobe Analysis 1. Soil Science Society of America Journal, 34, 483485. https://doi.org/10.2136/sssaj1970.03615995003400030035xCrossRefGoogle Scholar
Jackson, M. L. (1979). Soil chemical analysis – advanced course (2nd edn.). 11th printing, Madison, Wisconsin, pp. 169251.Google Scholar
Jain, R. L. (1997). Study of search of potash in glauconite bearing shale and sandstone in kachchh District, Gujarat (pp. 19941995). Geological Survey of India, progress report for the FSP.Google Scholar
Janardhana Rao, L. H., Srinivasarao, C., & Ramakrishnan, T. L. (1975). Reclassification of the rocks of Bhima basin, Gulburga district, Mysore state. Geological Survey of India, Miscellaneous Publication, 23, 177184.Google Scholar
Karimi, E., Abdolzadeh, A., Sadeghipour, H. R., & Aminei, A. (2012). The potential of glauconitic sandstone as a potassium fertilizer for olive plants. Archives of Agronomy and Soil Science, 58, 983993. https://doi.org/10.1080/03650340.2011.557369CrossRefGoogle Scholar
Kelly, J. C., & Webb, J. A. (1999). The genesis of glaucony in the Oligo-Miocene Torquay Group, south eastern Australia: petrographic and geochemical evidence. Sedimentary Geology, 125, 99114. https://doi.org/10.1016/S0037-0738(98)00149-3CrossRefGoogle Scholar
Kübler, B. (1983). Dosage quantitatif des minéraux majeurs des roches sédimentaires par diffraction X. Cahiers de l'Institut de Géologie Series AX, 1(1), 113.Google Scholar
Kumar, V., & Bakliwal, P. C. (2005). Potash in India. Geological Survey of India. Miscellaneous. Publication, 65, xiii, 134.Google Scholar
Kuran, B., & Sahiwala, N. K. (1999). Study for search for potash in Glauconite-bearing shale and sandstone, Gujarat. Record of Geological Survey of India, 129, 4849.Google Scholar
Li, X., Cai, Y., Hu, X., Huang, Z., Wang, J., & Christidis, G. (2012). Mineralogical characteristics and geological significance of Albian (Early Cretaceous) glauconite in Zanda, southwestern Tibet, China. Clay Minerals, 47, 4558. https://doi.org/10.1180/claymin.2012.047.1.45CrossRefGoogle Scholar
López-Quirós, A., Escutia, C., Sánchez-Navas, A., Nieto, F., Garcia-Casco, A., Martín-Algarra, A., Evangelinos, D., & Salabarnada, A. (2019). Glaucony authigenesis, maturity and alteration in the Weddell Sea: An indicator of paleoenvironmental conditions before the onset of Antarctic glaciation. Scientific Reports, 9, 1358013592. https://doi.org/10.1038/s41598-019-50107-1CrossRefGoogle Scholar
López-Quirós, A., Sánchez-Navas, A., Nieto, F., & Escutia, C. (2020). New insights into the nature of glauconite. American Mineralogist: Journal of Earth and Planetary Materials, 105, 674686.CrossRefGoogle Scholar
Mandal, S., Banerjee, S., Sarkara, S., Mondal, I., & Choudhury, T. R. (2020). Origin and sequence stratigraphic implications of high-alumina glauconite within the Lower Quartzite, Vindhyan Supergroup. Marine and Petroleum Geology, 112, 104040104055. https://doi.org/10.1016/j.marpetgeo.2019.104040CrossRefGoogle Scholar
Manghnani, M. H., & Hower, J. (1964a). Glauconites: cation exchange capacities and infrared spectra. Part I: The cation exchange capacity of glauconite. American Mineralogist, 49, 586598.Google Scholar
Manghnani, M. H., & Hower, J. (1964b). Glauconites: cation exchange capacities and infrared spectra. Part II: Infrared absorption characteristics of glauconites. American Mineralogist, 49, 16311642.Google Scholar
McRae, S. G. (1972). Glauconite. Earth-Science Reviews, 8, 397440. https://doi.org/10.1016/0012-8252(72)90063-3CrossRefGoogle Scholar
Mishra, R. N., Jayaprakash, A. V., Hans, S. K., & Sundaram, V. (1987). Bhima Group of Upper Proterozoic–a Stratigraphic puzzle. Memoirs–Geological Society of India, 6, 227237.Google Scholar
Mohammed, S. M. O., Brandt, K., Gray, N. D., White, M. L., & Manning, D. A. C. (2014). Comparison of silicate minerals as sources of potassium for plant nutrition in sandy soil. European Journal of Soil Science, 65, 653662. https://doi.org/10.1111/ejss.12172CrossRefGoogle Scholar
Odin, G. S. (1988). Green marine clays. Oolitic ironstone facies, verdine facies, glaucony facies and celadonitebearing facies — A comparative study. Developments in Sedimentology, 45, Elsevier Science Publishers, Amsterdam. https://doi.org/10.1180/claymin.1989.024.3.11Google Scholar
Odin, G. S., & Matter, A. (1981). De glauconiarum origine. Sedimentology, 28, 611641. https://doi.org/10.1111/j.1365-3091.1981.tb01925.xCrossRefGoogle Scholar
Paul, D. K., Ray, A., Das, B., Patil, S. K., & Biswas, S. K. (2008). Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch, Northwest India. Lithos, 102, 237259. https://doi.org/10.1016/j.lithos.2007.08.005CrossRefGoogle Scholar
Petit, S., Madejová, J., Decarreau, A., & Martin, F. (1999). Characterization of octahedral substitutions in kaolinites using near-infrared spectroscopy. Clays and Clay Minerals, 47, 103108. https://doi.org/10.1346/CCMN.1999.0470111CrossRefGoogle Scholar
Rahimzadeh, N., Khormali, F., Olamaee, M., Amini, A., & Dordipour, E. (2015). Effect of canola rhizosphere and silicate dissolving bacteria on the weathering and K release from indigenous glauconite shale. Biology and Fertility of Soils, 51, 973981. https://doi.org/10.1007/s00374-015-1043-yCrossRefGoogle Scholar
Rawlley, R. K. (1994). Mineralogical investigations on an Indian glauconitic sandstone of Madhya Pradesh state. Applied Clay Science, 8, 449465. https://doi.org/10.1016/0169-1317(94)90039-6CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., Dyakonov, Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., Koval, P. V., Müller, G., Neiva, A. M. R., Radoslovich, E. W., Roberts, J. L., Sassi, F. P., Takeda, H., Weiss, Z., & Wones, D. R. (1998). Nomenclature of the micas. Clays and Clay Minerals, 46, 586595. https://doi.org/10.1346/CCMN.1998.0460513CrossRefGoogle Scholar
Rudmin, M., Banerjee, S., Mazurov, A., Makarov, B., & Martemyanov, D. (2017). Economic potential of glauconitic rocks in Bakchar deposit (S-E Western Siberia) for alternate potash fertilizer. Applied Clay Science, 150, 225233. https://doi.org/10.1016/j.clay.2017.09.035CrossRefGoogle Scholar
Rudmin, M., Banerjee, S., Makarov, B., Mazurov, A., Ruban, A., Oskina, Y., Tolkachev, O., Buyakov, A., & Shaldybin, M. (2019). An investigation of plant growth by the addition of glauconitic fertilizer. Applied Clay Science, 180, 105178105186. https://doi.org/10.1016/j.clay.2019.105178CrossRefGoogle Scholar
Russell, J. D., Farmer, V. C., & Velde, B. (1970). Replacement of OH by OD in layer silicates, and identification of the vibrations of these groups in infra-red spectra. Mineralogical Magazine, 37, 869879. https://doi.org/10.1180/minmag.1970.037.292.01CrossRefGoogle Scholar
Sanchez-Navas, A., Martín-Algarra, A., Eder, V., Reddy, B. J., Nieto, F., & Zanin, Y. N. (2008). Color, mineralogy and composition of upper Jurassic west Siberian glauconite: useful indicators of paleoenvironment. Canadian Mineralogist, 46, 15451564. https://doi.org/10.3749/canmin.46.5.1249CrossRefGoogle Scholar
Schimicoscki, R. S., Oliveira, K. D., & Avila-Neto, C. N. (2020). Potassium recovery from a Brazilian glauconite siltstone via reaction with sulphuric acid in hydrothermal conditions. Hydrometallurgy, 191, 105251105259. https://doi.org/10.1016/j.hydromet.2020.105251CrossRefGoogle Scholar
Selim, K. A., Youssef, M. A., Abd El-Rahiem, F. H., & Hassan, M. S. (2014). Dye removal using some surface modified silicate minerals. International Journal of Mining Science and Technology, 24, 183189. https://doi.org/10.1016/j.ijmst.2014.01.007CrossRefGoogle Scholar
Selim, K. A., El-Tawil, R. S., & Rostom, M. (2018). Utilization of surface modified phyllosilicate mineral for heavy metals removal from aqueous solutions. Egyptian Journal of Petroleum, 27, 393401. https://doi.org/10.1016/j.ejpe.2017.07.003CrossRefGoogle Scholar
Shekhar, S., Mishra, D., Agrawal, A., & Sahu, K. K. (2017a). Physical and chemical characterization and recovery of potash fertilizer from glauconitic clay for agricultural application. Applied Clay Science, 143, 5056. https://doi.org/10.1016/j.clay.2017.03.016CrossRefGoogle Scholar
Shekhar, S., Mishra, D., Agrawal, A., & Sahu, K. K. (2017b). Physico-chemical treatment of glauconitic sandstone to recover potash and magnetite. Journal of Cleaner Production, 147, 681693. https://doi.org/10.1016/j.jclepro.2017.01.127CrossRefGoogle Scholar
Shekhar, S., Sinha, S., Mishra, D., Agrawal, A., & Sahu, K. K. (2020). A sustainable process for the recovery of potash fertilizer from glauconite through simultaneous production of pigment grade red oxide. Sustainable Materials and Technology, 23, e00129–e00137. https://doi.org/10.1016/j.susmat.2019.e00129Google Scholar
Shirale, A. O., Meena, B. P., Gurav, P. P., Srivastava, S., Biswas, A. K., Thakur, J. K., Somasundaram, J., Patra, A. K., & Rao, A. S. (2019). Prospects and challenges in utilization of indigenous rocks and minerals as source of potassium in farming rocks and minerals as source of potassium. Journal of Plant Nutrition, 42, 26822701. https://doi.org/10.1080/01904167.2019.1659353CrossRefGoogle Scholar
Soni, M. K. (1990). On the possibility of using glauconite sandstone as a source of raw material for potash fertilizer. Mining and Engineering Journal, 1, 310.Google Scholar
Sontakkey, V.A., Aehdi, R.S., Mohanram, I., Aruna, V.A.J., Lal, S.M., & Ravindran, I., (2017). Beneficiation of a glauconite sandstone sample, Kurchha-Barwadih area, Sonbhadra District, Uttar Pradesh. in: International Seminar on Mineral Processing Technology (MPT-XVI), Chennai, 13 February, 2017.Google Scholar
Soukup, D. A., Buck, B. J., & Harris, W. (2008). Preparing soils for mineralogical analyses. Methods of Soil Analysis Part 5- Mineralogical. Methods, 5, 1331. https://doi.org/10.2136/sssabookser5.5.c2Google Scholar
Srasra, E., & Trabelsi-Ayedi, M. (2000). Textural properties of acid-activated glauconite. Applied Clay Science, 17, 7184. https://doi.org/10.1016/S0169-1317(00)00008-9CrossRefGoogle Scholar
Stille, P., & Clauer, N. (1994). The process of glauconitization: chemical and isotopic evidence. Contributions to Mineralogy and Petrology, 117, 253262. https://doi.org/10.1007/BF00310867CrossRefGoogle Scholar
Tang, D., Shi, X., Jiang, G., Zhou, X., & Shi, Q. (2017a). Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102, 23172332. https://doi.org/10.2138/am-2017-6136CrossRefGoogle Scholar
Tang, D. J., Shi, X. Y., Ma, J. B., Jiang, G. Q., Zhou, X. Q., & Shi, Q. (2017b). Formation of shallow water glaucony in weakly oxygenated Precambrian Ocean: An example from the Mesoproterozoic Tieling Formation in North China. Precambrian Research, 294, 214229. https://doi.org/10.1016/j.precamres.2017.03.026CrossRefGoogle Scholar
Thompson, G. R., & Hower, J. (1975). The mineralogy of glauconite. Clays and Clay Minerals, 23, 289300. https://doi.org/10.1346/CCMN.1975.0230405CrossRefGoogle Scholar
Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., & Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum, 37, 114.CrossRefGoogle Scholar
Van Houten, F. B., & Purucker, M. E. (1984). Glauconitic peloids and chamositicooids — favorable factors, constraints, and problems. Earth Science Reviews, 20, 211243. https://doi.org/10.1016/0012-8252(84)90002-3CrossRefGoogle Scholar
Wigley, R., & Compton, J. S. (2007). Oligocene to Holocene glauconite-phosphorite grains from the Head of the Cape Canyon on the western margin of South Africa. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 13751395. https://doi.org/10.1016/j.dsr2.2007.04.004CrossRefGoogle Scholar
Wright, J., Schrader, H., & Holser, W. T. (1987). Paleoredox variations in ancient oceans recorded by rare-earth elements in fossil apatite. Geochemica et Cosmochimica Acta, 51, 631644. https://doi.org/10.1016/j.dsr2.2007.04.004CrossRefGoogle Scholar
Younes, H., Mahanna, H., & El-Etriby, H. K. (2019). Fast Adsorption of phosphate (PO4-) from wastewater using glauconite. Water Science and Technology, 80, 16431653. https://doi.org/10.2166/wst.2019.410CrossRefGoogle ScholarPubMed