Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T02:03:18.295Z Has data issue: false hasContentIssue false

Perturbative Theory of Mica Polytypism. Role of the M2 Layer in the Formation of Inhomogeneous Polytypes

Published online by Cambridge University Press:  28 February 2024

Massimo Nespolo*
Affiliation:
Japan Science and Technology Corporation, National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba-shi, Ibaraki 305-0044, Japan
*
E-mail of corresponding author: nespolo@nirim.go.jp

Abstract

A new model is proposed to explain, within the framework of the theory of spiral growth of Frank, the formation on inhomogeneous mica polytypes. This model relates the interaction and cooperative growth of two components (spirals and/or crystals) to produce a new stacking sequence. Depending on the relative orientation between the two components, a mismatch of the interlayer positions occurs, which is compensated through either a growth defect or a crystallographic slip at the octahedral (O) sheet. Both these adjustments transform the Ml layer into the M2 layer. These two types of layers have the same chemical composition but differ in cation distribution in the O sheet. The coalescence and cooperative growth of crystals occurs in fluid-rich environments and is most frequent in druses and volcanic fumaroles. These environments favor the inhomogeneous polytypes, especially those with complex stacking sequenc¬es. In addition, the Ml → M2 transformation is most probable in micas with an oxybiotitic composition, where the removal of the OH dipole strengthens the interlayer bonding and the presence of high-charge cations destabilizes the O sheet. Three examples of inhomogeneous polytypes of titaniferous oxybiotite from Ruiz Peak (a volcanic environment where many inhomogeneous polytypes have been reported) are presented.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amelinckx, S. and Dekeyser, W., (1953) Le Polytypisme des Minéraux Micacés et Argileux. Premiére partie: Observations et leaurs interprétations. Comptes Redus de la XIX session Congrès Geologique International, Comité International pour l’Étude des Argiles, Alger, fascicule XVIII 122.Google Scholar
Axelrod, J.M. and Grimaldi, F.S., (1949) Muscovite with small optic axial angle American Mineralogist 34 559572.Google Scholar
Bailey, R.A. and Smith, R.L., (1978) Volcanic Geology of the Jemez Mountains, New Mexico New Mexico New Mexico Bureau of Mines, Socorro 184196.Google Scholar
Bailey, S.W., (1984) Review of cation ordering in micas Clays and Clay Minerals 32 8192.Google Scholar
Bailey, S.W. and Christie, O.H.J., (1978) Three-layer mono-clinic lepidolite from Tørdal, Norway American Mineralogist 63 203204.Google Scholar
Baños, J.O. Amouric, M. De Fourquet, C. and Baronnet, A., (1983) Interlayering and interlayer slip in biotite as seen by HRTEM American Mineralogist 68 754758.Google Scholar
Baronnet, A., (1972) Growth mechanisms and polytypism in synthetic hydroxyl-bearing phlogopite American Mineralogist 57 12721293.Google Scholar
Baronnet, A., (1973) Sur les origines des dislocations vis et des spirales de croissance dans les micas Journal of Crystal Growth 19 193198.Google Scholar
Baronnet, A. and Kaldis, E., (1980) Polytypism in micas: A survey with emphasis on the crystal growth aspects Current Topics in Materials Science, Volume 5 ed. Amsterdam North-Holland Publishing Company 447548.Google Scholar
Baronnet, A. and Merlino, S., (1997) Equilibrium and kinetic processes for polytypes and polysome generation Modular Aspects of Minerals I EMU Notes in Mineralogy, Volume 1 Budapest Eötvös University Press 119152.Google Scholar
Baronnet, A. and Amouric, M., (1986) Growth spirals and complex polytypism in micas. II. Occurrence frequencies in synthetic species Bullettin de Minéralogie 109 489508.Google Scholar
Baronnet, A. and Kang, Z.C., (1989) About the origin of mica polytypes Phase Transitions 16/17 477493.Google Scholar
Baronnet, A. Amouric, M. and Chabot, B., (1976) Mécanismes de croissance, polytypisme et polymorphisme de la muscovite hydroxylée synthétique Journal of Crystal Growth 32 3759.Google Scholar
Barshad, I. and Kishk, F.M., (1968) Oxidation of ferrous iron in vermiculite and biotite alters fixation and replaceability of potassium Science 162 10411402.Google Scholar
Bassett, W.A., (1960) Role of hydroxyl orientation in mica alteration Bulletin of the Geological Society of America 71 449456.Google Scholar
Bell, I.A. and Wilson, C.J.L., (1977) Growth defects in meta-morphic biotite Physics and Chemistry of Minerals 2 153169.Google Scholar
Bell, I.A. and Wilson, C.J.L., (1981) Deformation of biotite and muscovite: TEM microstructure and deformation model Tectonophysics 78 201228.Google Scholar
Bell, I.A. and Wilson, C.J.L., (1986) TEM observations of defects in biotite and their relationship to polytypism Bullettin de Minéralogie 109 163170.Google Scholar
Bell, I.A. Wilson, C.J.L. McLaren, A.C. and Etheridge, M.A., (1986) Kinks in micas: Role of dislocations and (001) cleavage Tectonophysics 127 4965.Google Scholar
Bigi, S. and Brigatti, M.E., (1994) Crystal chemistry and microstructures of plutonic biotite American Mineralogist 79 6372.Google Scholar
Bloch, A.M. Zhukhlistov, A.P. and Zvyagin, B.B., (1990) Centrosymmetric and noncentrosymmetric one-layer polytypes of metasomatic sericites in the upper Devon of the Tuva Through Abstracts of the 15th General IMA Meeting, Beijing, China, Volume 1 297.Google Scholar
Bloss, F.D. Gibbs, G.V. and Cummings, D., (1963) Polymorphism and twinning in synthetic fluorophlogopite Journal of Geology 71 537547.Google Scholar
Borutskiy, B.Y. Soboleva, S.V. and Golovanova, T.I., (1987) Three-layered 3Tc biotite from the Khibiny pluton Transactions (Doklady) SSSR Academy of Sciences: Earth Science Section 294 141143.Google Scholar
Caslavsky, J.L. and Vedam, K., (1970) The study of dislocations in muscovite mica by X-ray transmission topography Philosophical Magazine 22 255268.Google Scholar
Catti, M. Ferraris, G. and Ivaldi, G., (1989) Thermal strain analysis in the crystal structure of muscovite at 700°C European Journal of Mineralogy 1 625632.Google Scholar
Chisholm, J.E., (1975) Crystallographic shear in silicate structures Surface Defects of Solids 4 126151.Google Scholar
Christoffersen, R. and Kronenberg, A.K., (1993) Dislocation interactions in experimentally deformed biotite Journal of Structural Geology 15 10771095.Google Scholar
Dahl, P.S. and Dorais, M.J., (1996) Influence of F(OH)_, substitution on the relative mechanical strength of rock-forming micas Journal of Geophysical Research 101 1151911524.Google Scholar
Dornberger-Schiff, K., (1959) On the nomenclature of the 80 plane groups in three dimensions Acta Crystallographica 12 173.Google Scholar
Dornberger-Schiff, K. Backhaus, K.-O. and Ďurovič, S., (1982) Polytypism of micas: OD-interpretation, stacking symbols, symmetry relations Clays and Clay Minerals 30 364374.Google Scholar
Ďurovič, S., (1979) Desymmetrization of OD structures Kristall und Technik 14 10471053.Google Scholar
Ďurovič, S. Weiss, Z. and Backhaus, K.-O., (1984) Polytypism of micas. II. Classification and abundance of MDO polytypes Clays and Clay Minerals 32 454474.Google Scholar
Efheridge, M.A. and Hobbs, B.E., (1974) Chemical and de-formational controls on recrystallization of mica Contributions to Mineralogy and Petrology 43 111124.Google Scholar
Etheridge, M.A. Hobbs, B.E. and Paterson, M.S., (1973) Experimental deformation of single crystals of biotite Contributions to Mineralogy and Petrology 38 2136.Google Scholar
Farmer, V.C. and Wilson, M.J., (1970) Experimental conversion of biotite to hydroxybiotite Nature 226 841842.Google Scholar
Filippov, L.V. Lipovsky, Y.O. and Kapitanova, T.A., (1976) Potassic basaltoids of Central Mongolia and come problems of abyssal magma formation Geokhimiya 4 475489 (in Russian).Google Scholar
Frank, F.C., (1949) The influence of dislocations on crystal growth Discussions of the Faraday Society 5 48.Google Scholar
Frank, F.C., (1951) The growth of carborundum; dislocations and polytypism Philosophical Magazine 42 10141021.Google Scholar
Frank, F.C., (1951) Capillary equilibria of dislocated crystals Acta Crystallographica 4 497501.Google Scholar
Guidotti, C.B. and Sassi, P.F., (1998) Petrogenic significance of Na-K white mica mineralogy: Recent advances for meta-morphic rocks European Journal of Mineralogy 10 815854.Google Scholar
Guinier, A. Bokij, G.B. Boll-Dornberger, K. Cowley, J.M. Ďurovič, S. Jagodzinski, H. Khrisna, P. DeWolff, P.M. Zvyagin, B.B. Cox, D.E. Goodman, P. Hahn, T.h. Ku-chitsu, K. and Abrahams, S.C., (1984) Nomenclature of polytype structures. Report of the International Union of Crystallography Ad-Hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures Acta Crystallographica A40 399404.Google Scholar
Güven, N., (1971) Structural factors controlling stacking sequences in dioctahedral micas Clays and Clay Minerals 19 159165.Google Scholar
Hartman, P. and Perdok, W.G., (1955) On the relations between structure and morphology of crystals, I Acta Crystallographica 8 4952.Google Scholar
Hendricks, S.B. and Jefferson, M.E., (1939) Polymorphism of the micas with optical measurements American Mineralogist 24 729771.Google Scholar
Ito, T., (1950) X-ray Studies on Polymorphism Tokyo Maruzen Co..Google Scholar
Juo, A.S.R. and White, J.L., (1969) Orientation of the dipole moments of hydroxyl groups in oxidized and unoxidized biotite Science 165 804805.Google Scholar
Kogure, T., (1997) On the structure of cleaved surfaces in biotite mica Mineralogical Journal 19 155164.Google Scholar
Kogure, T. and Nespolo, M., (1999) A TEM study of long-period mica polytypes: Determination of the stacking sequence of oxybiotite by means of atomic-resolution images and periodic intensity distribution (PID) Acta Crystallographica B55 507516.Google Scholar
Kogure, T. and Nespolo, M., (1999) First occurrence of a stacking sequence including (±60°, 180°) rotations in Mgrich annite Clays and Clay Minerals 47 784792.Google Scholar
Kogure, T. and Nespolo, M., (2001) Atomic structures of planar defects in oxybiotite American Mineralogist .Google Scholar
Kôzu, S. and Tsurumi, S., (1931) A consideration on chemical formula of anomite in basalt at Mutsure-jima Journal of the Japanese Association of Minerologists, Penologists and Economic Geologists, S 155166 (in Japanese).Google Scholar
Kôzu, S. and Yoshiki, B., (1929) On biotite from Mutsure-jima Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists 1 153161 (in Japanese).Google Scholar
Kronenberg, A.K. Kirny, S.H. and Pinkston, J., (1990) Basal slip and mechanical anisotropy of biotite Journal of Geophysical Research 95 1925719278.Google Scholar
Lemmlein, G.G. and Dukova, E.D., (1956) Attraction between centers of spiral of opposite sign during crystal growth Soviet Physics Crystallography 1 375377.Google Scholar
Mares, V.M. and Kronenberg, A.K., (1993) Experimental deformation of muscovite Journal of Structural Geology 15 10611075.Google Scholar
Nespolo, M., (1999) Analysis of family reflections of OD mica polytypes, and its application to twin identification Mineralogical Journal 21 5385.Google Scholar
Nespolo, M. and Takeda, H., (1999) Inhomogeneous mica polytypes: 8-layer polytype of the 2M, structural series determined by the periodic intensity distribution (PID) analysis of the X-ray diffraction pattern Mineralogical Journal 21 103118.Google Scholar
Nespolo, M. Takeda, H. and Ferraris, G., (1998) Representation of the axial settings of mica polytypes Acta Crystallographica A54 348356.Google Scholar
Nespolo, M. Takeda, H. Kogure, T. and Ferraris, G., (1999) Periodic intensity distribution (PID) of mica polytypes: Symbols, structural model orientation and axial settings Acta Crystallographica A55 659676.Google Scholar
Nespolo, M. Kogure, T. and Ferraris, G., (1999) Allotwin-ning: Oriented crystal association of polytypes compound. Some warning on consequences Zeitschrift für Kristallo graphie 214 49.Google Scholar
Nespolo, M. Ferraris, G. Takeda, H. and Takéuchi, Y., (1999) Plesiotwinning: Oriented crystal associations based on a large coincidence-site lattice Zeitschrift für Kristallographie 214 378382.Google Scholar
Nespolo, M. Ferraris, G. and Takeda, H., (2000) Identification of two allotwins of mica polytypes through the minimal rhombus unit in reciprocal space Acta Crystallographica B56 639647.Google Scholar
Noe, D.C. and Veblen, D.R., (1999) HRTEM analysis of dislocation cores and stacking faults in naturally deformed biotite crystals American Mineralogist 84 19251931.Google Scholar
Ohta, T. Takeda, H. and Takéuchi, Y., (1982) Mica polytypism: Similarities in the crystal structures of coexisting 1M and 1M 1 oxybiotite American Mineralogist 67 298310.Google Scholar
Pandey, D. Baronnet, A. and Krishna, P., (1982) Influence of the stacking faults on the growth of polytype structures in micas Physics and Chemistry of Minerals 8 268278.Google Scholar
Pauling, L., (1930) The structure of micas and related minerals Proceedings of the National Academy of Sciences 16 123129.Google Scholar
Peacock, M.A. and Ferguson, R.B., (1943) The morphology of muscovite in relation to the crystal lattice University of Toronto Studies in Mineralogy 48 6582.Google Scholar
Penn, R.L. and Banfield, J.F., (1998) Imperfect oriented attachment: Dislocation generation in defect-free nanocrys-tals Science 281 969971.Google Scholar
Ramsdell, L.S., (1947) Studies on silicon carbide American Mineralogist 32 6482.Google Scholar
Rieder, M., (1970) Lithium-iron micas from the Kruäne hory Mountains (Erzgebirge): Twins, epitactic overgrowths and polytypes Zeitschrift für Kristallographie 132 161184.Google Scholar
Rieder, M. Huka, M. Kučerovâ, D. Minařík, L. Obermajer, J. and Povondra, P., (1970) Chemical composition and physical properties of lithium-iron micas from the Krušné hory Mts. (Erzgebirge) Contributions to Mineralogy and Petrology 27 131158.Google Scholar
Rieder, M. Cavazzini, G. D’yakonov, Yu S Frank-Kamenetskii, V.A. Gottardi, G. Guggenheim, S. Koval’, P.V. Müller, G. Neiva, A.M.R. Radoslowich, E.W. Robert, J.L. Sassi, F.R. Takeda, H. Weiss, Z. and Wones, D.R., (1998) Nomenclature of the micas Clays and Clay Minerals 46 586595.Google Scholar
Ross, M. Takeda, H. and Wones, D.R., (1966) Mica polytypes: Systematic description and identification Science 151 191193.Google Scholar
Ross, M. and Wones, D.R., (1965) Polytypism in biotites American Mineralogist 50 291.Google Scholar
Rule, A.C. Bailey, S.W. Livi, K.J.T. and Veblen, D.R., (1987) Complex stacking sequences in a lepidolite from Tørdal, Norway American Mineralogist 72 11631169.Google Scholar
Sadanaga, R. and Takeda, H., (1968) Monoclinic diffraction patterns produced by certain triclinic crystals and diffraction enhancement of symmetry Acta Crystallographica B24 144149.Google Scholar
Sadanaga, R. and Takéuchi, Y., (1961) Polysynthetic twinning of micas Zeitschrift für Kristallographie 116 406429.Google Scholar
Silk, E.C.H. and Barnes, R.S., (1960) The Observation of Dislocations in Mica. United Kingdom Atomic Energy Authority Research Group Report, Metallurgy Division, Atomic Energy Research Establishment (AERE) R-3333. Harwell, Berkshire [a shorter version with the same title in Acta Metallurgica (1961) 9 558562.Google Scholar
Smith, J.V. and Yoder, H.S., (1956) Experimental and theoretical studies of the mica polymorphs Mineralogical Magazine 31 209235.Google Scholar
Smith, R.L. Bailey, R.A. and Ross, C.S., (1961) Structural Evolution of the Vallès Caldera, New Mexico, and its Bearing on the Emplacement of Ring Dikes. U.S. Geological Survey Professional Paper 366 .Google Scholar
Sunagawa, I., (1964) Growth spirals on phlogopite crystals American Mineralogist 49 14271434.Google Scholar
Sunagawa, I., (1977) Natural crystallization Journal of Crystal Growth 42 214223.Google Scholar
Sunagawa, I., (1978) Vapour growth and epitaxy of minerals and synthetic crystals Journal of Crystal Growth 45 312.Google Scholar
Sunagawa, I., (1982) Morphology of crystals in relation to growth conditions Estudios Géologique 38 127134.Google Scholar
Sunagawa, I. Bennema, P. and Wilcox, W.R., (1982) Morphology of growth spirals, theoretical and experimental Preparation and Properties of Solid State Materials, Volume 7, Growth Mechanism of Silicon Nitrate New York Marcel Dekker Inc. 1129.Google Scholar
Sunagawa, I. and Endo, Y., (1971) Morphology of nucleus of galena and phlogopite Mineralogical Society of Japan Special Paper 1 2529 (Proceeding IMA-IAGOD Meetings ’70, IMA Volume).Google Scholar
Sunagawa, I. and Koshino, I., (1975) Growth spirals on kaolin group minerals American Mineralogist 60 407412.Google Scholar
Sunagawa, I. and Tomura, S., (1976) Twinning in phlogopite American Mineralogist 61 939943.Google Scholar
Sunagawa, I. Endo, Y. Daimon, N. and Tate, I., (1968) Nu-cleation, growth and polytypism of fiuor-phlogopite from the vapour phase Journal of Crystal Growth 34 751.Google Scholar
Sunagawa, I. Koshino, Y. Asakura, M. and Yamamoto, T., (1975) Growth mechanism of some clay minerals Fortschritte der Mineralogie 52 217224.Google Scholar
Takeda, H., (1967) Determination of the layer stacking sequence of a new complex mica polytype: A 4-layer lithium fluorophlogophite Acta Crystallographica 22 845853.Google Scholar
Takeda, H. and Donnay, J.D.H., (1966) Trioctahedral one-layer micas. III. Crystal structure of a synthetic lithium fluor-mica Acta Crystallographica 20 638646.Google Scholar
Takeda, H. and Morosin, B., (1975) Comparison of observed and predicted parameters of mica at high temperature Acta Crystallographica B31 24442452.Google Scholar
Takeda, H. and Ross, M., (1975) Mica polytypism: Dissimilarities in the crystal structures of coexisting 1M and 2M, biotite American Mineralogist 60 10301040.Google Scholar
Takeda, H. and Ross, M., (1995) Mica polytypism: Identification and origin American Mineralogist 80 715724.Google Scholar
Takeda, H. Haga, N. and Sadanaga, R., (1971) Structural investigation of polymorphic transition between 2M 2-, 1M-lepidolite and 2M 1 muscovite Mineralogical Journal 6 203215.Google Scholar
Takéuchi, Y., (1997) Tropochemical Cell-Twinning. A Structure Building Mechanism in Crystalline Solids Tokyo Terra Scientific Publishing Company.Google Scholar
Takéuchi, Y. and Haga, N., (1971) Structural transformation of trioctahedral sheet silicates. Slip mechanism of octahedral sheets and polytypic changes of micas Mineralogical Society of Japan Special Paper 1 7487 (Proceedings IMA-IAGOD Meetings ’70, IMA Volume).Google Scholar
Tomisaka, T., (1958) On the chemical properties, optical properties and the structural types of some muscovites and phlogopites (Studies in the mica group, report 1) Journal of the Mineralogical Society of Japan 3 710721 (in Japanese).Google Scholar
Tomisaka, T., (1962) Polytypes of the phlogopite-biotite series and their mutual relations Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists 47 134143 (in Japanese, with English abstract).Google Scholar
Tomura, S. Kitamura, M. and Sunagawa, I., (1979) Surface microtopography of metamorphic white micas Physics and Chemistry of Minerals 5 6581.Google Scholar
Van Valkenburg, A. and Pike, R.G., (1952) Synthesis of mica Journal of Research of the National Bureau of Standards 48 360369.Google Scholar
Verma, A.R., (1953) Crystal Growth and Dislocations London But-terworths.Google Scholar
Wilson, C.J.L. and Bell, I.A., (1979) Deformation of biotite and muscovite: Optical microstructure Tectonophysics 58 179200.Google Scholar
Zhukhlistov, A.P. and Zyagin, B.B., (1991) The efficiency of electron diffraction in revealing 2:1 layer differing in structure and symmetry, found in dioctahedral micas and smectites Proceedings of the 7th Euroclay, Conference, Dresden 12111212.Google Scholar
Zhukhlistov, A.P. Zvyagin, B.B. and Pavlishin, V.l., (1990) Polytypic 4M modification of Ti-biotite with nonuniform alternation of layers, and its appearance in electron-diffraction patterns from textures Soviet Physics Crystallography 35 232236.Google Scholar
Zhukhlistov, A.P. Litsarev, M.A. and Fin’ko, V.l., (1993) First find of a six-layered triclinic 6Tc polytype of a Ti-oxybiotite Transactions (Doklady) SSSR Academy of Sciences: Earth Science Section 329 188194.Google Scholar
Zhukhlistov, A.R. Dragulescu, E.M. Rusinov, V.L. Kova-lenker, V.A. Zvyagin, B.B. and Kuz’mina, O.V., (1996) Sericite with a non-centrosymmetric structure from the gold-silver base metal deposit Banskâ Štiavnica (Slovakia) Proceedings of the Russian Mineralogical Society 125 4754 (in Russian, with English abstract).Google Scholar
Zvyagin, B.B., (1988) Polytypism of crystal structures Computer Mathematics Applications 16 569591.Google Scholar
Zvyagin, B.B. and Merlino, S., (1997) Modular analysis of crystal structures Modular Aspects of Minerals/EMU Notes in Mineralogy, Volume 1 Budapest Eötvös University Press 345372.Google Scholar
Zvyagin, B.B. Vrublevskaya, Z.V. Zhukhlistov, A.P. Sidorenko, O.V. Soboleva, S.V. and Fedotov, A.E., (1979) High-voltage electron diffraction in the study of layered minerals Moscow Nauka Press (in Russian).Google Scholar
Zvyagin, B.B. Rabotnov, V.T. Sidorenko, O.V. and Kotelnikov, D.D., (1985) Unique mica built of non-centrosym-metrical layers Izvestia Akademyia Nauk SSSR (geology series) 5 121124.Google Scholar