Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T16:47:43.430Z Has data issue: false hasContentIssue false

Nuclear Magnetic Resonance, Infrared, and X-ray Powder Diffraction Study of Dimethylsulfoxide and Dimethylselenoxide Intercalates with Kaolinite

Published online by Cambridge University Press:  02 April 2024

M. Raupach
Affiliation:
CSIRO-Division of Soils, Private Bag No. 2, Glen Osmond, South Australia 5064, Australia
P. F. Barron
Affiliation:
Brisbane NMR Centre, School of Science, Griffith University, Nathan, Queensland 4111, Australia
J. G. Thompson
Affiliation:
Research School of Chemistry, Australian National University, GPO Box 4, Canberra, A.C.T. 2605, Australia

Abstract

Dimethylselenoxide (DMSeO) forms three structurally resolvable intercalates with kaolinite (d(001) = 10.95, 11.26, and 11.38 Å). The 11.26-Å kaolinite: DMSeO intercalate is structurally analogous to the 3-D ordered kaolinite: DMSO intercalate (d(001) = 11.22 Å). Infrared and solid-state 77Se nuclear magnetic resonance data indicate that all DMSeO molecules are equivalent in the structure and, therefore, that the 11.26-Å kaolinite: DMSeO intercalate structure is C-face centered. Structural model refinement from X-ray powder diffraction (XRD) data further support this conclusion (Pl, a = 5.195(2), b = 8.990(4), c = 11.946(5) Å, α = 91.33(2)°, β = 109.39(2)°, γ = 89.77(2)°). The kaolinite: DMSO intercalate structure was subsequently re-refined from the XRD profile in C-face centered Pl. The derived orientation of the DMSO and DMSeO molecules with respect to the basal plane of their respective intercalates is in agreement with polarized infrared measurements of the angles with ab of S=O (40.3°) and Se=O (38.8°) for the 11.26-Å intercalate. The locations of the organic molecules also agree with observed infrared band splittings and perturbations. Interatomic distances calculated from the band shifts agree with those for the XRD derived structures.

The 11.38-Å kaolinite: DMSeO intercalate is closely related to the 11.26-Å intercalate, the main differences being a 2-fold disorder in the orientation of the DMSeO molecule and less penetration of the kaolinite ditrigonal cavity by that molecule. The 10.95-Å kaolinite: DMSeO intercalate, displaying disorder parallel to [110], was obtained from the 11.26- or 11.38-Å intercalates by removal of some DMSeO.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. M., 1979 The crystal structure of a diekite: N-methylformamide intercalate [Al2Si2O5(OH)4 HCONHCH3] Acta Crystallogr. B35 10841088.CrossRefGoogle Scholar
Adams, J. M., 1983 Hydrogen atom positions in kaolinite by neutron profile refinement Clays & Clay Minerals 31 352356.CrossRefGoogle Scholar
Adams, J. M. and Jefferson, D. A., 1976 The crystal structure of a diekite: formamide intercalate Al2Si2O5(OH4·HCONH2 Acta Crystallogr. B32 11801183.CrossRefGoogle Scholar
Ayrey, G., Barnard, D. and Woodbridge, D. T., 1962 The oxidation of organoselenium compounds by ozone J. Chem. Soc. 20892099.CrossRefGoogle Scholar
Bellamy, L. T. and Owen, A. J., 1969 A simple relationship between the infra-red stretching frequencies and the hydrogen bond distances in crystals Spectrochim. Acta 25A 329333.CrossRefGoogle Scholar
Brindley, G. W. and Robinson, K., 1946 The structure of kaolinite Mineral. Mag. 27 242253.Google Scholar
Costanzo, P. M. and Giese, R. F. Jr., 1986 Ordered halloysite: dimethylsulfoxide intercalate Clays & Clay Minerals 34 105107.CrossRefGoogle Scholar
Costanzo, P. M., Giese, R. F. Jr. and Lipsicas, M., 1984 Static and dynamic structure of water in hydrated kaolinites. I. The static structure Clays & Clay Minerals 32 419428.CrossRefGoogle Scholar
Drits, V. A. and Kashaev, A. A., 1960 An X-ray study of a single crystal of kaolinite Sov. Phys. Crystallogr. Engl. Trans. 5 207210.Google Scholar
Hamilton, W. C., 1965 Significance tests on the crystallographic R factor Acta Crystallogr. 18 502510.CrossRefGoogle Scholar
Hopf, G. and Paetzold, R., 1972 Untersuchungen an SelenVerbindungen LX*. Schwingungsanalyse des Dimethylselenoxids J. Mol. Struct. 13 361369.CrossRefGoogle Scholar
Jacobs, H., Sterckx, M. and Serratosa, J. M., 1970 A contribution to the study of the intercalation of dimethyl sulfoxide in the kaolinite lattice Proc. Reunion Hispano-Belge Miner. Arg., Madrid Madrid Cons. Super. Invest. Cient. 154160.Google Scholar
Johnston, C. T., Sposito, G., Bocian, D. F. and Birge, R. R., 1984 Vibrational spectroscopic study of interlamellar kaolinite-dimethyl sulfoxide complex J. Phys. Chem. 88 59595964.CrossRefGoogle Scholar
McFarlane, W. and Wood, R. J., 1972 Nuclear magnetic double-resonance studies of organo-selenium compounds J. Chem. Soc., Dalton Trans. 13971402.CrossRefGoogle Scholar
Miyoshi, N., Furui, S., Murai, S. and Sonoda, N., 1975 Oxyselenation: Reaction of olefins with dimethyl selenoxide JCS Chem. Commun. 293.CrossRefGoogle Scholar
Newnham, R. E. and Brindley, G. W., 1956 The crystal structure of dickite Acta Crystallogr. 9 759764.CrossRefGoogle Scholar
Odom, J. D., Dawson, W. H. and Ellis, P. D., 1979 Selenium-77 relaxation time studies on compounds of biological importance: Dialkyl selenides, dialkyl diselenides, selenols, selenonium compounds, and seleno oxyacids J. Amer. Chem. Soc. 101 58155822.CrossRefGoogle Scholar
Olejnik, S., Aylmore, L. A. G. Posner, A. M. and Quirk, J. P., 1968 Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes J. Phys. Chem. 72 241249.CrossRefGoogle Scholar
Paetzold, R., 1968 Untersuchungen an Selen-Verbindungen—XLVI. Korrelation zwischen SO- und SeO-Valenzkraftkonstanten Spectrochim. Acta 24A 717720.CrossRefGoogle Scholar
Paetzold, R., 1970 Untersuchungen an Selen-Verbindungen—LII. Korrelation zwischen Valenzkraftkonstanten und Bindungslângen von Selen-Sauerstoff-Bindungen Spectrochim. Acta 26A 577580.CrossRefGoogle Scholar
Paetzold, R. u. and Bochmann, G., 1968 Aliphatische selenoxide und Selenone Z. Anorg. Allg. Chem. 360 293299.CrossRefGoogle Scholar
Paetzold, R., Lindner, U., Bochmann, G. and Reich, P., 1967 Dimethyl- und Diäthylselenoxid sowie ihre Oxoniumsalze Darstellung, Eigenschaften und Schwingungsspektren Z. Anorg. Allg. Chem. 352 295308.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C., 1977 Determination of structural defects in phyllosilicates by X-ray powder diffraction—II. Nature and proportion of defects in natural kaolinites Clays & Clay Minerals 25 436450.CrossRefGoogle Scholar
Raupach, M., 1986 An explanation of infrared band shifts at clay surfaces in organic and other systems Trans. 13th Cong. Int. Soc. Soil Science, Hamburg, 1986 Hamburg ISSS-AISS-IBG 438.Google Scholar
Raupach, M. and Janik, L. J., 1987 Polarized infrared study of anilinium vermiculite. I. Spectra and models J. Coll. Int. Science .Google Scholar
Sheldrick, G. M., 1976 A program for crystal structure determination United Kingdom University Chemical Laboratory, Cambridge.Google Scholar
Suitch, P. R. and Young, R. A., 1983 Atom positions in highly ordered kaolinite Clays & Minerals 31 357366.CrossRefGoogle Scholar
Syper, L. and Mlochowski, J., 1984 The convenient synthesis of organoselenium reagents Synthesis 439442.CrossRefGoogle Scholar
Theng, B. K. G., 1974 The Chemistry of Clay-Organic Reactions New York Wiley 239260.Google Scholar
Thomas, R., Shoemaker, C. B. and Klaas, E., 1966 The molecular and crystal structure of dimethyl sulfoxide, (H3C)2SO Acta Crystallogr. 21 1220.CrossRefGoogle Scholar
Thompson, J. G., 1985 Interpretation of solid state 13C and 29Si nuclear magnetic resonance spectra of kaolinite intercalates Clays & Clay Minerals 33 173180.CrossRefGoogle Scholar
Thompson, J. G. and Cuff, C., 1985 Crystal structure of kaolinite: dimethylsulfoxide intercalate Clays & Clay Minerals 33 490500.CrossRefGoogle Scholar
Thompson, J. G. and Withers, R. L., 1987 A transmission electron microscopy (TEM) contribution to the structure of kaolinite Clays & Clay Minerals 35 237240.CrossRefGoogle Scholar
Wiles, D. B. and Young, R. A., 1981 New computer program for Rietveld analysis of X-ray powder diffraction patterns J. Appl. Crystallogr. 14 149151.CrossRefGoogle Scholar
Young, R. A. and Wiles, D. B., 1981 Application of the Rietveld method for structure refinement with powder diffraction data Adv. X-ray Anal. 24 123.Google Scholar
Zvyagin, B. B., 1960 Electron diffraction determination of the structure of kaolinite Sov. Phys. Crystallogr. Engl. Trans. 5 3242.Google Scholar