Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-09T06:27:11.090Z Has data issue: false hasContentIssue false

Morphological Effects on Illite as A Result of Potassium Depletion

Published online by Cambridge University Press:  01 July 2024

Warren D. Huff*
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221, U.S.A.

Abstract

Several illites and a mixed-layer illite-montmorillonite developed fractures in some particles during progressive removal of interlayer potassium by solutions containing sodium tetraphenylboron. The appearance of the splinters in bundles, some connected to incompletely broken plates, suggests the process is related to the differential release of stresses known to exist as a consequence of octahedral-tetrahedral misfit. The formation of splinters produces additional surface area for ion removal and may influence the rate of vermiculite development.

Résumé

Résumé

Plusieurs illites et un interstratifié illite-montmorillonite montrent le développement de fractures dans certaines particules au cours de l’élimination progressive du potassium interfeuillet par des solutions contenant du tétraphénylborate de sodium. L’apparition d’éclats en gerbes, certains d’entre eux étant attachés à des plaques incomplètement brisées, suggère que le phénomène est relié à la disparition différentielle des contraintes provenant des défauts de raccordement entre couches octaédriques et tétraédriques. La formation des éclats produit une surface supplémentaire pour l’élimination des ions et peut influencer la vitesse du développement de la vermiculite.

Kurzreferat

Kurzreferat

Mehrere Illite und ein gemischtschichtiger Illit-Montmorillonit entwickelten Risse in einigen Teilchen während der fortschreitenden Entfernung von Zwischenschichtkalium durch Lösungen, die Natrium-Tetraphenylbor enthielten. Das Auftreten von Splittern in Bündeln, manche mit unvollständig gebrochenen Platten verbunden, deutet daraufhin, dass der Vorgang mit der unterschiedlichen Freigabe von Spannungen in Beziehung steht, die bekanntlich als Folge oktaedrischem Nichtpassens bestehen. Die Bildung von Splittern führt zu zusätzlicher Oberfläche für die Entfernung von Ionen und kann die Geschwindigkeit einer Entwicklung von Vermiculit beeinflussen.

Резюме

Резюме

Во время прогрессивного удаления межслоевого калия растворами содержащими тетра- финилборный натрий в частицах иллита и в частицах смешанных слоев монтмориллонита-иллита появились трещины. Появление осколков в срастаниях, приводит к предположению, что процесс относится к дифференциальному снятию напряжения, которое существует, как известно, вследствие октаэдрического-тетраздрического несовмещения. Образование осколков представляет добавочную поверхностную площадь для удаления ионов и может повлиять на скорость образования вермикулита.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution No. 108.

References

1. Bassett, W. A., (1959) The origin of the vermiculite deposit at Libby, Montana Am. Mineralogist 44 282299.Google Scholar
2. Brown, J. and Rich, C. I., (1968) High resolution electron microscopy of muscovite Science 161 11351137.CrossRefGoogle ScholarPubMed
3. Huff, W. D., (1963) Mineralogy of Ordovician K-bentonites in Kentucky Clays and Clay Minerals 11 200209.Google Scholar
4. Kitagawa, Y. and Watanabe, Y., (1970) Preparation of dioctahedral vermiculite from muscovite Clay Sci. 4 3136.Google Scholar
5. Lodding, W., (1970) On potassium release from micas Clays and Clay Minerals 18 67.CrossRefGoogle Scholar
6. Mamy, J., (1970) Extraction of interlayer K from phlogopite special effects of cations, role of Na and H concentrations in extracting solutions Clays and Clay Minerals 18 157163.CrossRefGoogle Scholar
7. Mankin, C. J. and Dodd, C. G., (1963) proposed reference illite from the Ouachita Mountains of southeastern Oklahoma Clays and Clay Minerals 11 372379.Google Scholar
8. Mortland, M. M. and Lawton, K., (1961) Relationships between particle size and potassium release from biotite and its analogues Soil Sci. Soc. Am. Proc. 25 473476.CrossRefGoogle Scholar
9. Radoslovich, E. W., (1963) Cell dimension studies on layer lattice silicates, a summary Clays and Clay Minerals 11 225228.Google Scholar
10. Reed, M. G. and Scott, A. D., (1962) Kinetics of potassium release from biotite and muscovite in sodium tetraphenylboron solutions Soil Sci. Soc. Am. Proc. 26 437440.CrossRefGoogle Scholar
11. Graf von Reichenbach, H. and Rich, C. I., (1969) Potassium release from muscovite as influenced by particle size Clays and Clay Minerals 17 2329.CrossRefGoogle Scholar
12. Robert, M., (1971) Étude expérimentale de l’évolution des micas (biotites) A nn. Agron. 22 155181.Google Scholar
13. Ross, G. J. and Kodama, H., (1970) Differential release of potassium from interstratified mica clay minerals as related to probable differences in their mica layer components Clays and Clay Minerals 18 151156.CrossRefGoogle Scholar
14. Ross, M., (1968) X-ray diffraction effects by non-ideal crystals of biotite, muscovite, montmorillonite, mixed-layer clays, graphite, and periclase Z. Krist. 126 8097.CrossRefGoogle Scholar
15. Scott, A. D., (1968) Effect of particle size on interlayer potassium exchange in micas Trans. 9th Int. Cong. Soil Sci. 2 649660.Google Scholar
16. Scott, A. D., Hunziker, R. R. and Hanway, J. J., (1960) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron—I. Preliminary experiments Soil Sci. Soc. Am. Proc. 24 191194.CrossRefGoogle Scholar
17. Scott, A. D. and Smith, S. J., (1966) Susceptibility of interlayer potassium in micas to exchange with sodium Clays and Clay Minerals 14 6981.CrossRefGoogle Scholar
18. Smith, S. J. and Scott, A. D., (1966) Extractable potassium in grundite illite: I. Method of extraction Soil Sci. 102 115122.CrossRefGoogle Scholar
19. Tomita, K. and Sudo, T., (1971) Transformation of sericite into an interstratified mineral Clays and Clay Minerals 19 263270.CrossRefGoogle Scholar
20. Weaver, C. E., (1953) Mineralogy and Petrology of some Ordovician K-bentonites and related linestones Bull. Geol. Soc. Am. 64 921943.CrossRefGoogle Scholar
21. White, J. L., (1951) Transformation of illite into montmorillonite Soil Sci. Sco. Am. Proc. 15 129133.CrossRefGoogle Scholar