Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-30T01:23:36.506Z Has data issue: false hasContentIssue false

Molecular Modeling to Predict the Optimal Mineralogy of Smectites as Binders of Aflatoxin

Published online by Cambridge University Press:  01 January 2024

Marek Szczerba*
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Kraków 31002, Poland
Youjun Deng
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
Mariola Kowalik-Hyla
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Kraków 31002, Poland

Abstract

Numerous experiments have verified that smectites can adsorb aflatoxin B1 (AfB1) effectively and the efficiency of this process depends heavily on the chemical, physical, and mineralogical characteristics of the smectite. Several relationships between these characteristics and AfB1 sorption have been determined experimentally, but the molecular mechanisms underlying these were not investigated. In the current study the effects of charge density, type of exchange cation, and charge origin (octahedral vs. tetrahedral) on AfB1 sorption on smectites were analyzed by a series of molecular simulations. The calculations confirmed the formation of water bridges between carbonyl groups of AfB1 molecules and interlayer cations. Flat orientation of AfB1 molecules on smectite surfaces was also confirmed. For larger amounts of AfB1 molecules in the intercalates, self-association of two AfB1 molecules bound by π–π interaction was shown. The thermodynamics of AfB1 sorption depends heavily on the water content in the structure, being optimal for basal distances corresponding to two layers of water. A clear preference for sorption of AfB1 on smectites with bivalent cations (Ba2+, Ca2+) and an octahedral origin of its layer charge was confirmed and this was explained as steric hindrance between hydrated ions and AfB1 molecules, which tend to lie flat on smectite surfaces devoid of ions. Ba-montmorillonite with a charge of 0.4 per half unit cell was shown to have the smallest and thus the best potential energy of adsorption compared to the other layer charges.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Eric Ferrage

References

Awuor, A. O., Yard, E., Daniel, J. H., Martin, C., Bii, C., Romoser, A., Oyugi, E., Elmore, S., Amwayi, S., Vulule, J., Zitomer, N. C., Rybak, M. E., Phillips, T. D., Montgomery, J. M., & Lewis, L. S. (2017). Evaluation of the efficacy, acceptability and palatability of calcium montmorillonite clay used to reduce aflatoxin B1 dietary exposure in a crossover study in Kenya. Food Additives & Contaminants, Part A, 34, 93102.CrossRefGoogle Scholar
Barrientos-Velazquez, A. L., & Deng, Y. (2020). Reducing competition of pepsin in aflatoxin adsorption by modifying a smectite with organic nutrients. Toxins, 12, 28.CrossRefGoogle ScholarPubMed
Barrientos-Velazquez, A. L., Arteaga, S., Dixon, J. B., & Deng, Y. (2016a). The effects of pH, pepsin, exchange cation, and vitamins on aflatoxin adsorption on smectite in simulated gastric fluids. Applied Clay Science, 120, 1723.CrossRefGoogle Scholar
Barrientos-Velazquez, A. L., Marroquin Cardona, A., Liu, L., Phillips, T., & Deng, Y. (2016b). Influence of layer charge origin and layer charge density of smectites on their aflatoxin adsorption. Applied Clay Science, 132-133, 281289.CrossRefGoogle Scholar
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relations to protein hydration. In Pullman, B. (Ed.), Intermolecular Forces (The Jerusalem Symposia on Quantum Chemistry and Biochemistry) (Vol. 14, pp. 331342). Springer.CrossRefGoogle Scholar
Colvin, B. M., Sangster, L. T., Haydon, K. D., Beaver, R. W., & Wilson, D. M. (1989). Effect of a high affinity aluminosilicate sorbent on prevention of aflatoxicosis in growing pigs. Veterinary and Human Toxicology, 31, 4648.Google ScholarPubMed
Cygan, R. T., Liang, J. J., & Kalinichev, A. G. (2004). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 12551266.CrossRefGoogle Scholar
Deng, Y., & Szczerba, M. (2011). Computational evaluation of bonding between aflatoxin B1 and smectite. Applied Clay Science, 54, 2633.CrossRefGoogle Scholar
Deng, Y., Barrientos-Velazquez, A. L., Billes, F., & Dixon, J. B. (2010). Bonding mechanisms between aflatoxin B1 and smectite. Applied Clay Science, 50(1), 9298.CrossRefGoogle Scholar
Deng, Y., Liu, L., Barrientos-Velazquez, A. L., & Dixon, J. B. (2012). The determinative role of the exchange cation and layer-charge density of smectite on Aflatoxin adsorption. Clays and Clay Minerals, 60, 374386.CrossRefGoogle Scholar
Jaynes, W., Zartman, R., & Hudnall, W. (2007). Aflatoxin B1 adsorption by clays from water and corn meal. Applied Clay Science, 36(1-3), 197205.CrossRefGoogle Scholar
Kannewischer, I., Tenorio, A. M. G., White, G. N., & Dixon, J. B. (2006). Smectite clays as adsorbents of aflatoxin B1: Initial steps. Clay Science, 12(Supplement 2), 199204.Google Scholar
Khan, A., Akhtar, M. S., Akbar, S., Khan, K. S., Iqbal, M., Barrientos-Velazquez, A. L., & Deng, Y. (2022). Effects of Metal-Polycation Pillaring and Exchangeable Cations on Aflatoxin Adsorption by Smectite. Clays and Clay Minerals, 70, 155164.CrossRefGoogle Scholar
Kubena, L. F., Harvey, R. B., Huff, W. E., & Corrier, D. E. (1990). Efficacy of a hydrated sodium calcium aluminosilicate to reduce the toxicity of aflatoxin and T-2 toxin. Poultry Science, 69, 10781086.CrossRefGoogle ScholarPubMed
Laird, D. A. (2006). Influence of layer charge on swelling of smectites. Applied Clay Science, 34, 7487.CrossRefGoogle Scholar
Magnoli, A. P., Cabaglieri, L. R., Magnoli, C. E., Monge, J. C., Miazzo, R. D., Peralta, M. F., Salvano, M. A., Rosa, C. A. R., Dalcero, A. M., & Chiacchiera, S. M. (2008). Bentonite performance on broiler chickens fed with diets containing natural levels of aflatoxin B1. Revista Brasileira De Medicina Veterinaria, 30, 5560.Google Scholar
Maki, C. R., Thomas, A. D., Elmore, S. E., Romoser, A. A., Harvey, R. B., Ramirez-Ramirez, H. A., & Phillips, T. D. (2016). Effects of calcium montmorillonite clay and aflatoxin exposure on dry matter intake, milk production, and milk composition. Journal of Dairy Science, 99, 10391046.CrossRefGoogle ScholarPubMed
Masimango, N., Remacle, J., & Ramaut, J. (1979). Elimination of aflatoxin B1 from contaminated media by swollen clays. Annales de la Nutrition et de l'Alimentation, 33, 137147.Google Scholar
Mitchell, N. J., Xue, K. S., Lin, S., Marroquin-Cardona, A., Brown, K. A., Elmore, S. E., Tang, L., Romoser, A., Gelderblom, W. C., Wang, J. S., & Phillips, T. D. (2014). Calcium montmorillonite clay reduces AFB1 and FB1 biomarkers in rats exposed to single and co-exposures of aflatoxin and fumonisin. Journal of Applied Toxicology, 34, 795804.CrossRefGoogle ScholarPubMed
Phillips, T. D., Kubena, L. F., Harvey, R. B., Taylor, D. R., & Heidelbaugh, N. D. (1988). Hydrated sodium calcium aluminosilicate: A high affinity sorbent for aflatoxin. Poultry Science, 67, 243247.CrossRefGoogle ScholarPubMed
Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 119.CrossRefGoogle Scholar
Pollock, B. H., Elmore, S., Romoser, A., Tang, L., Kang, M. S., Xue, K., Rodriguez, M., Dierschke, N. A., Hayes, H. G., Hansen, H. A., Guerra, F., Wang, J. S., & Phillips, T. (2016). Intervention trial with calcium montmorillonite clay in a south Texas population exposed to aflatoxin. Food Additives & Contaminants, Part A, 33, 13461354.Google Scholar
Rudbeck, M. (2006). Potassium(I) in water from Theoretical Calculations. Diploma thesis, Department of Mathematics, Uppsala University, Uppsala, Sweden, pp. 51.Google Scholar
Smith, D. W. (1977). Ionic hydration enthalpies. Journal of Chemical Education, 54, 540541.CrossRefGoogle Scholar
Szczerba, M., Kalinichev, A. G., & Kowalik, M. (2020). Intrinsic hydrophobicity of smectite basal surfaces quantitatively probed by molecular dynamics simulations. Applied Clay Science, 188, 105497.CrossRefGoogle Scholar
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25, 11571174.CrossRefGoogle ScholarPubMed
Wang, W., Tian, G., Zong, L., Zhou, Y., Kang, Y., Wang, Q., & Wang, A. (2017). From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water. Journal of Environmental Sciences (China), 51, 3143.CrossRefGoogle ScholarPubMed
Supplementary material: File

Szczerba et al. supplementary material
Download undefined(File)
File 2.1 MB