Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T01:24:14.632Z Has data issue: false hasContentIssue false

Mineralogical and Geochemical Characteristics and Genesis of the Sepiolite Deposits at Polatli Basin (Ankara, Turkey)

Published online by Cambridge University Press:  01 January 2024

Muazzez Çelik Karakaya*
Affiliation:
Selçuk Üniversitesi Müh-Mim. Fak. Jeoloji Müh. Böl., Konya, 42075 Turkey
Necati Karakaya
Affiliation:
Selçuk Üniversitesi Müh-Mim. Fak. Jeoloji Müh. Böl., Konya, 42075 Turkey
Abidin Temel
Affiliation:
Hacettepe Üniversitesi Müh Fak. Jeoloji Müh. Böl., 06800 Beytepe Ankara, Turkey
*
* E-mail address of corresponding author: mzzclk@hotmail.com

Abstract

The Middle—Upper Miocene—Pliocene sediments near Polatlı contain commercial sepiolitic clay deposits. The sepiolite-rich Polatlı basin sediments were studied to describe the sepiolitic clay deposits of the area and to assess the environments of formation using X-ray diffraction, optical and scanning electron microscopy, and chemical analysis. The Polatlı basin is an elongated, rift-related graben trending NE—SW in central Turkey, filled with continental Late Miocene to Early Pliocene sediments. The sediments which comprise claystone, marl and limestone, dolostone, and evaporites are characteristic deposits of low-salinity, playa-lake depositional environments. These sepiolite-rich deposits include sepiolite, dolomite, and calcite, with minor amounts of palygorskite, quartz, moganite, amorphous silica (opal-CT), and feldspar.

The sepiolite shows all the characteristic X-ray diffraction reflections of that mineral, whereas amorphous silica containing sepiolite shows some of the characteristic reflections of sepiolite, but with somewhat broader and less intense basal reflections. In the siliceous deposits, the long, fibrous, and filamentous aggregates of the sepiolite were converted to thick, short fibers, low in Mg, and showing transition to amorphous silica.

Major and trace elements (e.g. Si, Al, Fe, Mg, Sr, Ba, etc.) were found almost exclusively in Mg-rich smectitic claystone and detrital silicate-rich rocks, whereas Mg, Ca, and some Si were concentrated in the neoformed minerals in the basin. The rare-earth elements (REE) and some of the high-field strength elements (HFSE), large ion lithophile elements (LILE), and transition elements (TRE) patterns were similar for detrital silicate-rich rocks and formed from neoformed mineral lithologies. The REE, TRE, LILE, and some of the HFSE contents of limestone, dolostone, and sepiolitic claystone were similar while those of detrital silicate-rich rocks and Mg-rich smectitic claystones were similar to each other. PAAS-normalized REE and other trace-element patterns were typically subparallel and depleted in neoformed minerals. All sample groups had positive Eu* anomalies, except Mg-rich smectite (0.80). Limestone, dolostone, and amorphous silica compounds showed slightly negative Ce* anomalies, whereas sepiolitic claystones, Mg-rich smectitic claystones, and detrital silicate-rich rocks had a slightly positive Ce* anomaly.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anadón, P. Ghetti, P. and Gliozzi, E., 2002 Sr/Ca, Mg/Ca ratios and Sr and stable isotopes of biogenic carbonates from the Late Miocene Velona Basin (central Apennines, Italy) provide evidence of unusual non-marine Messinian conditions Chemical Geology 187 213230 10.1016/S0009-2541(02)00023-2.CrossRefGoogle Scholar
Asutay, H.J., Küçükyaman, A., and Gözler, M.Z. (1989) Dağküplü (Eskişehir kuzeyi) ofiyolit karmaşığıın stratigrafisi, yapısal konumu ve kümülatların petrografisi. MTA Dergisi 109, 18.Google Scholar
Aubert, D. Stille, P. and Probst, A., 2001 REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence Geochimica et Cosmochimica Acta 64 18271841.Google Scholar
Bailey, S.W., Brindley, G.W. Brown, G., 1980 Structures of layer silicates Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 1123.Google Scholar
Bellanca, A. Karakaş, Z. Neri, R. and Varol, B., 1993 Sedimentology and isotope geochemistry of lacustrine dolomite-evaporite deposits and associated clays Mineralogica Petrographica Acta XXXVI 245264.Google Scholar
Birsoy, R., 2002 Formation of sepiolite-palygorskite and related minerals from solution Clays and Clay Minerals 50 736745 10.1346/000986002762090263.CrossRefGoogle Scholar
Blatt, H. Middleton, G. and Murray, R., 1972 Origin of Sedimentary Rocks New Jersey, USA Prentice-Hall.Google Scholar
Bonnot-Courtois, C., 1981 Géochimie des Teres Rares dans les principaus milieux de formation et de sédimentation des argiles Orsay, France Université Paris-Sud, Centre d’Orsay.Google Scholar
Braun, J.-J. Pagel, M. Muller, J.-P. Bilong, P. Michard, A. and Guillet, B., 1990 Cerium anomalies in lateritic profiles Geochimica et Cosmochimica Acta 54 781795 10.1016/0016-7037(90)90373-S.CrossRefGoogle Scholar
Bustillo, M.A., 2002 Occurrence and significance of the moganite in silica rocks: A review Journal of Iberian Geology 28 157166.Google Scholar
Class, C. and la Roex, A.P., 2008 Ce anomalies in Gough Island lavas - trace element characteristics of a recycled sediment component Earth and Planetary Science Letters 265 475486 10.1016/j.epsl.2007.10.030.CrossRefGoogle Scholar
Çoban, F., 2001 Ahiler (Sivrihisar-Eşkişehir) sepiyolitinin jeokimyasal özellikleri Yerbilimleri 39 1330.Google Scholar
Cox, R. Lowe, D.R. and Cullers, R.L., 1995 The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the South-western United States Geochimica et Cosmochimica Acta 59 29192940 10.1016/0016-7037(95)00185-9.CrossRefGoogle Scholar
Cullers, R.L., 1994 The controls on the major- and traceelement evolution on shales, siltstones and sandstone of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediments in Kansas, USA Geochimica et Cosmochimica Acta 58 49554972 10.1016/0016-7037(94)90224-0.CrossRefGoogle Scholar
Cullers, R.L., 1995 The controls on the major and traceelement evolution on shales, siltstones and sandstone of Ordovician to Tertiary age in wet mountains region, Colorado, USA Chemical Geology 123 107131 10.1016/0009-2541(95)00050-V.CrossRefGoogle Scholar
Cullers, R.L. Chaudhuri, S. Arnold, B. Lee, M. and Wolf, C.W., 1975 Rare earth distributions in clay minerals and in the clay-sized fractions of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma Geochimica et Cosmochimica Acta 39 16911703 10.1016/0016-7037(75)90090-3.CrossRefGoogle Scholar
Cullers, R.L. Basu, A. and Suttner, L.J., 1988 Geochemical signature of provenance in sand-mixed material in soils and stream sediments near the Tobacco Root batholiths, Montana, U.S.A Chemical Geology 70 335348 10.1016/0009-2541(88)90123-4.CrossRefGoogle Scholar
De Deckker, P. Chivas, A.R. and Shelley, J.M.G., 1988 Paleoenvironment of the Messinian Mediterranean “Lago-Mare” from Strontium and Magnesium in Ostracode shells Palaios 3 352358 10.2307/3514664.CrossRefGoogle Scholar
Deocampo, D.M. (2010) The geochemistry of continental carbonates. Pp. 159 in: Carbonates in Continental Settings, Geochemistry, Diagenesis, and Applications (Alonso-Zarza, A.M. and Tanner, L.H., editors). Developments in Sedimentology, 62, Elsevier, Amsterdam.CrossRefGoogle Scholar
de Villiers, S., 1999 Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans Earth and Planetary Science Letters 171 623634 10.1016/S0012-821X(99)00174-0.CrossRefGoogle Scholar
Dill, H. Teschner, M. and Wehner, H., 1988 Petrography, inorganic, and organic geochemistry of Lower Permian carbonaceous fan sequences (“Brandschiefer Series”) — Federal Republic of Germany: constraints to their paleogeography and assessment of their source rock potential Chemical Geology 67 307325 10.1016/0009-2541(88)90136-2.CrossRefGoogle Scholar
Ece, I. and Çoban, M., 1994 Geology, occurrence and genesis of Eskişehir sepiolites, Turkey Clays and Clay Minerals 42 8192 10.1346/CCMN.1994.0420111.CrossRefGoogle Scholar
Ece, I. Suner, F. and Çoban, F., 2003 An approach to the origin of gypsum series in Upper Miocene succession, Eskişehir-Sivrihisar Lacustrine Basin, Turkey Neues Jahrbuch für Mineralogie - Monatshefte 11 481502 10.1127/0028-3649/2003/2003-0481.CrossRefGoogle Scholar
Esteban-Cubillo, A. Pina-Zapardiel, R.J. Moya, S. Barba, M.F. and Pecharromán, C., 2008 The role of magnesium on the stability of crystalline sepiolite structure Journal of the European Ceramic Society 28 17631768 10.1016/j.jeurceramsoc.2007.11.022.CrossRefGoogle Scholar
Fleet, A.J., 1984 Aqueous and sedimentary geochemistry of the rare earth elements Rare Earth Element Geochemistry 2 343373 10.1016/B978-0-444-42148-7.50015-0.CrossRefGoogle Scholar
Florke, O.W. Martin, G.B. Bochum, R. and Wirth, R., 1991 Nomenclature of micro- and non-crystalline silica minerals, based on structure and microstructure Neues Jahrbuch fur Mineralogie - Abhandlungen 163 1942.Google Scholar
Galán, E. and Castillo, A., 1984 Sepiolite-palygorskite in Spanish Tertiary basins: genetic patterns in continental environments Palygorskite-sepiolite, Occurrences, Genesis and Uses 37 87124.Google Scholar
Galán, E. and Ferrero, A., 1982 Palygorskite-sepiolite clays of Lebrija, southern Spain Clays and Clay Minerals 30 191199 10.1346/CCMN.1982.0300305.CrossRefGoogle Scholar
Gençoğlu, H. and İrkeç, T., 1994 Eskişehir-Sivrihisar civarındaki sedimanter sepiyolit oluşumlarının ortamsal yorumu Türkiye Jeoloji Kurultay Bülteni 9 281296.Google Scholar
Gromet, L.P. Dymek, R.F. Haksin, L.A. and Korotev, R.L., 1984 The “North American shale composite”: its compilation, major and trace element characteristics Geochimica et Cosmochimica Acta 48 24693482 10.1016/0016-7037(84)90298-9.CrossRefGoogle Scholar
Helgeson, H.C. Harold, C. Garrels, R.M. Robert, M. and Mackenzie, F.T., 1969 Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions — II Applications: Geochimica et Cosmochimica Acta 33 455481.Google Scholar
Jackson, M.L., 1975 Soil Chemical Analysis - Advanced Course Wisconsin, USA Madison.Google Scholar
Jagoutz, E. Palme, H. Baddenhausen, H. Blum, K. Cendales, M. Dreibus, G. Spottel, B. Lorenz, V. and Wanke, H., 1979 The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules Geochimica et Cosmochimica Acta, Supplement 11 20312050.Google Scholar
Jenner, G.A., 1996 Trace element geochemistry of igneous rocks: geochemical nomenclature and analytical geochemistry Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration 12 5177.Google Scholar
Jones, B.F. and Deocampo, D.M., 2003 Saline lakes Surface and Ground Water, Weathering, Erosion and Soils 5 393424.Google Scholar
Kabata-Pendias, A. and Mukherjee, A., 2007 Trace Elements from Soil to Human Amsterdam Springer, Science Publishing 10.1007/978-3-540-32714-1.CrossRefGoogle Scholar
Kabata-Pendias, A. and Pendias, H., 2001 Trace Elements in Soils and Plants Boca Raton, Florida, USA CRC Press.Google Scholar
Kadir, S. Baş, H. and Karakaş, Z., 2002 Origin of sepiolite and loughlinite in a Neocene volcano-sedimentary lacustrine environment, Mihalıçık-Eskişehir, Turkey The Canadian Mineralogist 40 10911102 10.2113/gscanmin.40.4.1091.CrossRefGoogle Scholar
Karakaya, N. Karakaya, M. Temel, A. Küpeli, and Tunoğlu, C., 2004 Mineralogical and chemical characterization of the sepiolite occurrences at Karap.nar (Konya Basin, Turkey) Clays and Clay Minerals 52 495510 10.1346/CCMN.2004.0520410.CrossRefGoogle Scholar
Kent, D.B. and Kastner, M., 1985 Mg2+ removal in the system Mg2+-amorphous SiO2-H2O by adsorption and Mg-hydroxysilicate precipitation Geochimica et Cosmochimica Acta 49 11231136 10.1016/0016-7037(85)90003-1.CrossRefGoogle Scholar
Larsen, D., 2008 Revisiting silicate authigenesis in the Pliocene-Pleistocene Lake Tecopa beds, southeastern California: depositional and hydrological controls Geosphere 4 612639 10.1130/GES00152.1.CrossRefGoogle Scholar
Mayayo, M.J. Bauluz, B. López-Galindo, A. and González-López, J.M., 1996 Mineralogy and geochemistry of the carbonates in the Calatayud basin (Zaragoza, Spain) Chemical Geology 130 123136 10.1016/0009-2541(95)00185-9.CrossRefGoogle Scholar
Mayayo, M.J. Torres-Ruíz, J. González-López, J.M. López-Galindo, A. and Bauluz, B., 1998 Mineralogic and geochemical characterization of the sepiolite/Mg-rich smectite deposits at Mara (Calatayud basin, Spain) European Journal of Mineralogy 10 367383 10.1127/ejm/10/2/0367.CrossRefGoogle Scholar
McLean, S. Allen, B. and Craig, J., 1972 The occurrence of sepiolite and attapulgite on the Southern High Plains Clays and Clay Minerals 20 143149 10.1346/CCMN.1972.0200305.CrossRefGoogle Scholar
McLennan, S.M., 1989 Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes Geochemistry and Mineralogy of Rare Earth Elements 21 169190 10.1515/9781501509032-010.CrossRefGoogle Scholar
McLennan, S.M. and Taylor, S.R., 1991 Sedimentary rocks and crustal evolution: tectonic setting and secular trends Journal of Geology 99 121 10.1086/629470.CrossRefGoogle Scholar
McLennan, S.M. Nance, W.B. and Taylor, S.R., 1980 Rare earth element-thorium correlation in sedimentary rocks, and the composition of the continental crust Geochimica et Cosmochimica Acta 44 18331839 10.1016/0016-7037(80)90232-X.CrossRefGoogle Scholar
Moore, C.L., 1998 Evolution of regolith development and element mobility during weathering using isocon technique Geological Society of Australia, Special Publication 20 141147.Google Scholar
MTA (2001) 1:500.000 scale map. Prepared by Geological research Department of the General Directorate of Mineral Research and Exploration.Google Scholar
Nemecz, E., 1981 Clay Minerals Budapest Akademia Kiado.Google Scholar
Parry, W. and Reeves, C., 1968 Sepiolite from pluvial Mound Lake, Lynn and Terry Counties, Texas American Mineralogist 53 884993.Google Scholar
Post, J.L., 1978 Sepiolite Deposits of the Las Vegas, Nevada Area Clays and Clay Minerals 26 5864 10.1346/CCMN.1978.0260107.CrossRefGoogle Scholar
Santiago Buey, C. Suárez Barrios, M. García-Romero, E. and Doval Montoya, M., 2000 Mg-rich smectite Precursor phase in the Tagus Basin, Spain Clays and Clay Minerals 48 366373 10.1346/CCMN.2000.0480307.CrossRefGoogle Scholar
Saunders, A.D. Tarney, J. Marsh, N.G. Wood, D.A. and Panayiotou, A., 1980 Ophiolites as ocean crust: a geochemical approach Ophiolites: Proceedings of the International Ophiolite Symposium Cyprus Geological Survey Department 193204.Google Scholar
Schilling, J.G., 1973 Iceland Mantle Plume: geochemical study of Reykjanes ridge Nature 242 565571 10.1038/242565a0.CrossRefGoogle Scholar
Stow, D.A.V. Atkin, B.P., Brooks, J. Glennie, K., 1987 Sediment facies and geochemistry of Upper Jurassic mudrocks in the central North Sea area Petroleum Geology of North West Europe London Graham and Trotman 797808.Google Scholar
Taylor, S.R. and McLennan, S.M., 1985 The Continental Crust: its Composition and Evolution Blackwell Oxford UK, 312 pp.Google Scholar
Temel, A. and Gündoğdu, M.N., 1996 Zeolite occurrences and erionite-mesothelioma relationship in Cappadocia region, Central Anatolia, Turkey Mineralium Deposita 31 539547 10.1007/BF00196134.CrossRefGoogle Scholar
Temel, A. Yürür, T. Alıcı, P. Varol, E. Gourgaud, A. Bellon, H. and Demirbağ, H., 2010 Alkaline series related to Early-Middle Miocene intra-continental rifting in a collision zone: an example from Polatlı, Central Anatolia, Turkey Journal of Asian Earth Sciences 38/6 289306 10.1016/j.jseaes.2009.12.017.CrossRefGoogle Scholar
Terkado, Y. and Fujitani, T., 1998 Behavior of rare earth elements and other trace elements during interactions between acidic hydrothermal solutions and silicic volcanic rocks, southwestern Japan Geochimica et Cosmochimica Acta 62/11 19031917 10.1016/S0016-7037(98)00109-4.CrossRefGoogle Scholar
Torres-Ruíz, J. Lopez-Galindo, A. González-Lopez, J.M. and Delgado, A., 1994 Geochemistry of Spanish sepiolitepalygorskite deposits: Genetic considerations based on trace elements and isotopes Chemical Geology 112 221245 10.1016/0009-2541(94)90026-4.CrossRefGoogle Scholar
Varol, E. Temel, A. Gourgaud, A. and Bellon, H., 2007 Early Miocene adakite-like volcanism in the Balkuyumcu region, central Anatolia, Turkey Petrology and Geochemistry Journal of Asian Earth Sciences 30 613628 10.1016/j.jseaes.2007.02.002.CrossRefGoogle Scholar
Weaver, C.E. (1989) Clays, Muds and Shales. Developments in Sedimentology, 44, Elsevier, Amsterdam, 819 pp.Google Scholar
Weaver, C.E. and Pollard, L.D. (1973) The Chemistry of Clay Minerals. Developments in Sedimentology, XX, Elsevier Science Publishing, Amsterdam, 213 pp.Google Scholar
Whitney, D.L. and Evans, B.W., 2010 Abbreviations for names of rock-forming minerals American Mineralogist 95 185187 10.2138/am.2010.3371.CrossRefGoogle Scholar
Wise, S.W. and Kelts, K.R., 1972 Inferred diagenetic history of a weakly silicified Deep Sea Chalk Trans Gulf Coast Association of Geological Societies 22 177203.Google Scholar
Wronkiewicz, D.J. and Condie, K.C., 1987 Geochemistry of Archean greywackes from Wyoming Supergroup, South Africa: source-area weathering and provenance Geochimica et Cosmochimica Acta 51 24012416 10.1016/0016-7037(87)90293-6.CrossRefGoogle Scholar
Wronkiewicz, D.J. and Condie, K.C., 1989 Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0 Ga old continental craton Geochimica et Cosmochimica Acta 53 15371549 10.1016/0016-7037(89)90236-6.CrossRefGoogle Scholar
Wronkiewicz, D.J. and Condie, K.C., 1990 Geochemistry and mineralogy of sediments from the Ventersdrop and Transvaal Supergroups, South Africa: cratonic evolution during the early Paleozoic Geochimica et Cosmochimica Acta 54 343354 10.1016/0016-7037(90)90323-D.CrossRefGoogle Scholar
Yalçın, H. and Bozkaya, , 1995 Sepiolite-palygorskite from the Hekimhan Region (Turkey) Clays and Clay Minerals 43 705717 10.1346/CCMN.1995.0430607.CrossRefGoogle Scholar
Yalçın, H. and Bozkaya, , 2004 Ultramafic-rock-hosted vein sepiolite occurrences in the Ankara Ophiolitic Mélange, central Anatolia, Turkey Clays and Clay Minerals 52 227339 10.1346/CCMN.2004.0520209.CrossRefGoogle Scholar
Yeniyol, M., 1986 Vein-like sepiolite occurrence as a replacement of magnesite in Konya, Turkey Clays and Clay Minerals 34 353356 10.1346/CCMN.1986.0340317.CrossRefGoogle Scholar
Yeniyol, M., 1992 Geology, mineralogy and genesis of Yenidog.an (Sivrihisar) sepiolite deposit Mineral Research and Exploration Bulletin of Turkey 114 7184.Google Scholar