Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T21:44:25.572Z Has data issue: false hasContentIssue false

Mineralogical and Elemental Trends in Regolith on Historically Managed Sites in the southeastern United States Piedmont

Published online by Cambridge University Press:  01 January 2024

Paul A. Schroeder*
Affiliation:
University of Georgia, Department of Geology, Athens, GA 30602-2501, USA
Jason C. Austin
Affiliation:
University of Georgia, Department of Geology, Athens, GA 30602-2501, USA Duke University, Earth and Climate Sciences Division, Nicholas School of the Environment, Durham, NC 27708-0328, USA
Aaron Thompson
Affiliation:
University of Georgia, Department of Crop and Soil Sciences, Athens, GA 30602, USA
Daniel D. Richter
Affiliation:
Duke University, Earth and Climate Sciences Division, Nicholas School of the Environment, Durham, NC 27708-0328, USA
*

Abstract

The deep regolith of the southeastern United States has undergone rapid erosion in the last two centuries due to intensive agricultural practices, which has altered the landscape and its inherent fertility. Parent material, landscape position, and land use are important factors in controlling the mineral and elemental composition of soil profiles. Independent quantitative X-ray diffraction (QXRD) and whole-rock chemical analysis of eight weathering profiles agreed well and allow mineral reaction pathways to be constrained as particles are conveyed in the subsurface. QXRD analysis of saprolite, argillic, and soil A-horizons in the profiles highlights the imprint of bedrock on the regolith, which includes Neoproterozoic meta-tonalitic to meta-granodioritic and Paleozoic meta-granitic to biotite- and amphibolite-gneissic lithologies. Also, aeolian input slightly influenced A-horizon composition. The clay mineral assemblage is dominated by kaolinite, but profiles differ in the amount of interstratified clay minerals, halloysite, hematite, goethite, and gibbsite. Rare-earth element totals vary between 30 and 1048 ppm and are generally correlated positively with clay and clay mineral content. Eu and Ce anomalies reflect parent rocks and subsequent hydrolysis and redox history, with trends depending upon landscape position and clay content in the weathering profile. Weathering profiles on a high-order interfluve and those that were actively cultivated have thick argillic horizons (as defined by clay mineral abundance) and are depleted in alkali and alkaline-earth elements. Profiles proximally developed on old-field pine and never-cultivated hardwood forest land do not show large differences in mineral composition trends, whereas profiles on old-field sites with ongoing cultivation exhibit assemblages enriched in clay minerals and (oxyhydr)oxides. Old-field pine sites that were historically eroded by previous cultivation tend to have shallower and thinner argillic horizons, which may well impact critical-zone processes involving gas and water fluxes. This study highlights that mineral compositions of deep regolith, saprolite, and shallow soil horizons are dependent on local geomorphology (i.e. watershed- and hillshed-orders). Quantifying soil and regolith compositional trends across the landscape is a prerequisite for determining rates of chemical and physical erosion on human and geologic time scales.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197213.CrossRefGoogle Scholar
Austin, J. C., & Schroeder, P. A. (2014). Assessment of pedogenic gibbsite as a paleo-PCO2 proxy using a modern Ultisol. Clays and Clay Minerals, 62(5), 235266.CrossRefGoogle Scholar
Austin, J. C., Richter, D. D., & Schroeder, P. A. (2020). Quantification of interstratified clays in multiple saturation states using NEWMOD2: Implications for the potassium uplift hypothesis in the SE United States. Clays and Clay Minerals., 68(1), 6780. https://doi.org/10.1007/s42860-019-00060CrossRefGoogle Scholar
Bacon, A.R. (2014) Pedogenesis and Anthropedogenesis on the southern Piedmont. Ph.D. Dissertation 3617449, Advisor, D.D. Richter, University program in Ecology Duke University. Pp. 119.Google Scholar
Bacon, A. R., Richter, D. D., Bierman, P. R., & Rood, D. H. (2012). Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient north American interfluve. Geology, 40, 847850. https://doi.org/10.1130/G33449.1CrossRefGoogle Scholar
Banwart, S., Menon, M., Bernasconi, S. M., Bloem, J., Blum, W. E. H., de Souza, D. M., Davidsdotir, B., et al. (2012). Soil processes and functions across an international network of critical zone observatories; Introduction to experimental methods and initial results. Comptes Rendus Geoscience, 344(11–12), 758772. https://doi.org/10.1016/j.crte.2012.10.007CrossRefGoogle Scholar
Bau, M. (1999). Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63, 6777.CrossRefGoogle Scholar
Bau, M., Koschinsky, A., Dulski, P., & Hein, J. R. (1996). Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochimica et Cosmochimica Acta, 60, 17091725.CrossRefGoogle Scholar
Bern, C. R., Yesavage, T., & Foley, N. K. (2017). Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration. Journal of Geochemical Exploration, 172, 2933.CrossRefGoogle Scholar
Berner, R. A. (2004). The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press.CrossRefGoogle Scholar
Billings, S. A., & Sullivan, P. L. (2020). Working across scales to project soil biogeochemical responses to climate. In Yang, Y., Keiluweit, M., Senesi, N., & Xing, B. (Eds.), Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes (pp. 112). Vol. 5 in IUPAC Series on Biophysico-Chemical Processes in Environmental Systems, John Wiley & Sons.Google Scholar
Brantley, S. L., Lebedeva, M. I., Balashov, V. N., Singha, K., Sullivan, P. L., & Stinchcomb, G. (2017). Toward a conceptual model relating chemical reaction fronts to water flow paths in hills. Geomorphology, 277, 100117.CrossRefGoogle Scholar
Braun, J.-J., Pagel, M., Muller, J.-P., Bilong, P., Michard, A., & Guillet, B. (1990). Cerium anomalies in lateritic profiles. Geochimica et Cosmochimica Acta, 54, 781795.CrossRefGoogle Scholar
Brecheisen, Z. S., Cook, C. W., Heine, P. R., & Richter, D. D. (2019a). Micro-topographic roughness analysis (MTRA) highlights minimally eroded terrain in a landscape severely impacted by historic agriculture. Remote Sensing of Environment, 222, 7889.CrossRefGoogle Scholar
Brecheisen, Z. S., Cook, C. W., Heine, P. R., Ryang, J., & Richter, D. D. (2019b). Development and Deployment of a Field-Portable Soil O2 and CO2 Gas Analyzer and Sampler. PLoS One, 14(8), e0220176. https://doi.org/10.1371/journal.pone.0220176CrossRefGoogle ScholarPubMed
Brecheisen, Z. S., Richter, D. D., Moon, S., & Halpin, P. N. (2021). Quantitative analysis of hillshed geomorphology and critical zone function: Raising the hillshed to watershed status. GSA Bulletin. https://doi.org/10.1130/B35724.1CrossRefGoogle Scholar
Brimhall, G. H., & Dietrich, W. E. (1987). Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 51(3), 567587.CrossRefGoogle Scholar
Calabrese, S., Richter, D. D., & Porporato, A. (2018). The formation of clay-enriched horizons by lessivage. Geophysical Research Letters, 45(15), 75887595.CrossRefGoogle Scholar
Cannida, T. (2018) Petrography of the gneisses from the Mary Lou quarry, Clinton, SC: Implications for quantifying mineral compositions in the critical zone. University of Georgia, Athens, GA. USA. CURO Symposium. Program and Abstracts. p 58, http://curo.uga.edu/symposium/BOAs/CURO2018BOA.pdfGoogle Scholar
Cecil, C. B. (2003). The concept of autocyclic and Allocyclic controls on sedimentation and stratigraphy, emphasizing the climatic variable. Special Publication - Society for Sedimentary Geology, 77(October), 1320.Google Scholar
Chen, C., Barcellos, D., Richter, D. D., Schroeder, P. A., & Thompson, A. (2019). Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity. Journal of Soil Sedimentary, 19, 785797.CrossRefGoogle Scholar
Churchman, G. J. (1990). Relevance of different intercalation tests for distinguishing halloysite from kaolinite in soils. Clays and Clay Minerals, 38(6), 591599.CrossRefGoogle Scholar
Cook, C.W. (2019). CCZO – photographic imagery, soil survey – soil pit profiles – Calhoun CZO – (2016-2016), HydroShare, http://www.hydroshare.org/resource/ae1b338cc7a641f68fd5c4f85dba97a1Google Scholar
Coughlan, M. R., & Nelson, D. R. (2018). Influences of native American land use on the colonial euro-American settlement of the South Carolina Piedmont. PLoS ONE, 13(3), e0195036.CrossRefGoogle ScholarPubMed
Coughlan, M. R., Nelson, D. R., Lonneman, M., & Block, A. E. (2017). Historical land use dynamics in the highly degraded landscape of the Calhoun critical zone observatory. Land, 6(2), 32.CrossRefGoogle Scholar
Dennis, A. J., & Wright, J. E. (1997). The Carolina terrane in northwestern South Carolina, USA: Late Precambrian-Cambrian deformation and metamorphism in a peri-Gondwanan oceanic arc. Tectonics, 16(3), 460473.CrossRefGoogle Scholar
Dietel, J., Gröger-Trampe, J., Bertmer, M. S., Kaufhold, K. U., & Dohrmann, R. (2019). Crystal structure model development for soil clay minerals–I. Hydroxy-interlayered smectite (HIS) synthesized from bentonite. A multi-analytical study. Geoderma, 347, 135149.CrossRefGoogle Scholar
Ferreira, E. P., Guerra, A. A. R., & de Azevedo, C. (2019). Rare earth elements in gneiss regoliths in southern Minas Gerais, Brazil. Scientia Agricola, 78(3). https://doi.org/10.1590/1678-992X-2019-0190Google Scholar
Hack, J. T. (1975). Dynamic equilibrium and landscape evolution. Theories of Landform Development, 1, 87102.Google Scholar
Hauser, E., Richter, D. D., Markewitz, D., Brecheisen, Z., & Billings, S. A. (2020). Persistent anthropogenic legacies structure depth dependence of regenerating rooting systems and their functions. Biogeochemistry, 147, 259275. https://doi.org/10.1007/s10533-020-00641-2CrossRefGoogle Scholar
Hochella, M. F. Jr., Mogk, D., Ranville, J. I. A., Luther, G., Marr, L., McGrail, E. P., Murayama, M., Qafoku, N., Rosso, K., Sahai, N., Schroeder, P. A., Vikesland, P., Westerhoff, P., & Yang, Y. (2019). Natural, incidental, & engineered nanomaterials and their impacts on the earth system. Science. https://doi.org/10.1126/science.aau8299CrossRefGoogle Scholar
Holbrook, W. S., Marcon, V., Bacon, A. R., Brantley, S. L., Carr, B. J., Flinchum, B. A., Richter, D. D., & Riebe, C. S. (2019). Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth's critical zone. Scientific Reports, 9, 4495.CrossRefGoogle ScholarPubMed
Horkowitiz, P. (1984). Geology of the Philson crossroads 7.5' quadrangle, South Carolina - the nature of the boundary separating the inner Piedmont from the Carolina-Avalon terrane in central northwestern South Carolina (M.S. thesis). University of South Carolina, 100p.Google Scholar
Hu, Z., Haneklaus, S., Sparovek, G., & Schnug, E. (2006) Rare earth elements in soils. Communications in Soil Science and Plant Analysis, 37(9–10), 13811420.CrossRefGoogle Scholar
Huebner, M. T., Hatcher, R. D., & Merschat, A. J. (2017). Confirmation of the southwest continuation of the Cat Square terrane, southern Appalachian Inner Piedmont, with implications for middle Paleozoic collisional orogenesis. American Journal of Science, 317(2), 95176.CrossRefGoogle Scholar
Hurst, V. J., Schroeder, P. A., & Styron, R. W. (1997). Accurate quantification of quartz and other phases by powder X-ray diffractometry. Analytica Chimica Acta, 337, 233252.CrossRefGoogle Scholar
Jobbágy, G., & Jackson, B. (2004). The uplift of soil nutrients by plants: Biogeochemical consequences across scales. Ecology, 85(9), 23802389.CrossRefGoogle Scholar
Jordan, B. (2020) Geology of the Calhoun Critical Zone Observatory. M.S. Thesis, University of Georgia, Department of Geology, Athens, GA. 1 Map, 104 p. https://esploro.libs.uga.edu/esploro/outputs/graduate/Geology-of-the-Calhoun-Critical-Zone-Observatory/9949348149502959.Google Scholar
Laveuf, C., & Cornu, S. (2009). A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154, 112.CrossRefGoogle Scholar
Lebedeva, M. I., & Brantley, S. L. (2013). Exploring geochemical controls on weathering and erosion of convex hillslopes: Beyond the empirical regolith production function. Earth Surface Processes and Landforms, 38, 17931807.CrossRefGoogle Scholar
Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., & Thompson, A. (2017). Expanding the role of reactive transport models in critical zone processes. Earth-Science Reviews, 165, 280301.CrossRefGoogle Scholar
Li, M. Y. H., & Zhou, M. F. (2020). The role of clay minerals in formation of regolith-hosted heavy rare earth element deposits. American Mineralogist, 105, 92108.CrossRefGoogle Scholar
Maleke, M., Valverde, A., Gomez-Arias, A., Cason, E. D., Vermeulen, J. G., Coetsee-Hugo, L., Swart, H., van Heerden, E., & Castillo, J. (2019). Anaerobic reduction of europium by a clostridium strain as a strategy for rare earth biorecovery. Scientific Reports, 9(1), 14339. https://doi.org/10.1038/s41598-019-50179-zCrossRefGoogle ScholarPubMed
Markewich, H. W., & Markewich, W. (1994) An overview of Pleistocene and Holocene inland dunes in Georgia and the Carolinas: Morphology, distribution, age, and paleoclimate. U.S. Geological Survey bulletin: 2069.Google Scholar
Moore, D. M., & Reynolds, R. C. (1997). X-ray diffraction and the identification and analysis of clay minerals. Oxford [England]. Oxford University Press.Google Scholar
Moravec, B. G., Keifer, V., Root, R. A., White, A. M., Wang, Y., Olshansky, Y., McIntosh, J., & Chorover, J. (2021). Experimental weathering of a Volcaniclastic critical zone profile: Key role of colloidal constituents in aqueous geochemical response. Chemical Geology, 559. https://doi.org/10.1016/j.chemgeo.2020.119886CrossRefGoogle Scholar
Nesbitt, H., & Young, G. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715717. https://doi.org/10.1038/299715a0CrossRefGoogle Scholar
Price, J. R., & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202(3–4), 397416.CrossRefGoogle Scholar
Raven, M. D., & Self, P. G. (2017). Outcomes of 12 years of the Reynolds cup quantitative mineral analysis round Robin. Clays and Clay Minerals, 65, 122134. https://doi.org/10.1346/CCMN.2017.064054CrossRefGoogle Scholar
Richter, D. D., & Markewitz, D. (2001). Understanding soil change: Soil sustainability over millennia, centuries, and decades. Cambridge University Press.Google Scholar
Richter, D. D., Eppes, M. C., Austin, J. C., Bacon, A. R., Billings, S. A., Brecheisen, Z., Ferguson, T. A., Markewitz, D., Pachon, J., Schroeder, P. A., & Wade, A. M. (2020). Soil production and the soil geomorphology legacy of grove Karl Gilbert. Soil Science Society of America Journal, 84(1), 120.CrossRefGoogle Scholar
Rietveld, H. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr., 22, 151.CrossRefGoogle Scholar
Ryland, R. C., Thompson, A., Sutter, L. A., & Markewitz, D. (2020). Mapping depth to the argillic horizon on historically farmed soil currently under forests. Geoderma, (369), 114291. https://doi.org/10.1016/j.geoderma.2020.114291CrossRefGoogle Scholar
Sanders, S.C. (2018) The fate of degraded biotites in the deep critical zone: Implications for the K-uplift hypothesis. University of Georgia Center for undergraduate research opportunities symposium. April 9-10, Athens, GA. Abstract with programs. p. 169 http://curo.uga.edu/symposium/BOAs/CURO2018BOA.pdfGoogle Scholar
Schroeder, P. A. (2018). Clays in the critical zone. Cambridge University press (online ISBN: 9781316480083).CrossRefGoogle Scholar
Schroeder, P. A., Kim, J. G., & Melear, N. D. (1997). Mineralogical and textural criteria for recognizing remnant Cenozoic deposits on the Piedmont: Evidence from Sparta & Greene County, Georgia, U.S.A. Sedimentary Geology, 108, 195206.CrossRefGoogle Scholar
Schroeder, P. A., Richter, D. D., & Sanders, S. C. (2020) The fate of degraded micas in the deep critical zone: Pathways to the formation of kaolinite and other secondary minerals in the S.E. US Piedmont. Geological Society of America meeting, northeastern/southeastern section, Reston. VA.CrossRefGoogle Scholar
St. Clair, J., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., Martel, S. J., Carr, B., Harman, C., Singha, K., & Richter, D. D. (2019). Geophysical imaging reveals topographic stress control of bedrock weathering. Science, 350(6260), 534538.CrossRefGoogle Scholar
Sullivan, P. L., Li, L., Goddéris, Y., & Brantley, S. L. (2020). Poised to Hindcast and Earthcast the effect of Climae on the critical zone: Shale Hills as a model. Geophysical Monograph, 250, 207–204.CrossRefGoogle Scholar
Thompson, A., Amistadi, M. K., Chadwick, O. A., & Chorover, J. (2013). Fractionation of yttrium and holmium during basaltic soil weathering. Geochimica et Cosmochimica Acta, 119, 1830.CrossRefGoogle Scholar
Ufer, K., Roth, G., Kleeberg, R., Stanjek, H., Dohrmann, R., & Bergmann, J. (2004). Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach. Zeitschrift für Kristallographie, 219, 519527.CrossRefGoogle Scholar
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R., & Kaufhold, S. (2008). Quantitative phase analysis of bentonites by the Rietveld method. Clays & Clay Minerals, 56, 272282.CrossRefGoogle Scholar
Vázquez-Ortega, A., Perdrial, J., Harpold, A., Zapata-Ríos, X., Rasmussen, C., McIntosh, J., Schaap, M., Pelletier, J. D., Brooks, P. D., Amistadi, M. K., & Chorover, J. (2015). Rare earth elements as reactive tracers of biogeochemical weathering in forested rhyolitic terrain. Chemical Geology, 391, 1932.CrossRefGoogle Scholar
Wymore, A., West, N., Maher, K., Sullivan, P., Harpold, A., Karwan, D., Marshall, J., Perdrial, J., Rempe, D., & Ma, L. (2017). Growing new generations of international critical zone scientists. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.4196CrossRefGoogle Scholar
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 253.2 KB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 631.5 KB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 635.4 KB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 670.1 KB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 668.7 KB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 564.2 KB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 643.9 KB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 835.2 KB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 1.1 MB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 1.3 MB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 1.1 MB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 1.1 MB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 1.1 MB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 409.5 KB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 2.2 MB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 2.2 MB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 7.8 MB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 1.4 MB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 1.4 MB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 18.4 KB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 41.1 KB
Supplementary material: File

Schroeder et al. supplementary material
Download undefined(File)
File 1.5 MB