Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-26T22:57:01.194Z Has data issue: false hasContentIssue false

Mineral Metastability in the System Al2O3-SiO2-H2O: A Reply

Published online by Cambridge University Press:  28 February 2024

E. J. Essene
Affiliation:
Department of Geological Services, University of Michigan, Ann Arbor, Michigan 48109
L. M. Anovitz
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721
D. Perkins
Affiliation:
Department of Geology and Geological Engineering, University of North Dakota, Grand Forks, North Dakota 58601

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Note
Copyright
Copyright © 1994, Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contribution No. XXX from the Mineralogical Laboratory, University of Michigan, Ann Arbor, Michigan 48109.

References

Anovitz, L. M., Perkins, D., and Essene, E. J., (1991) Metastability in near-surface rocks of minerals in the system Al2O3–SiO2–H2O: Clays & Clay Minerals 39, 225233.CrossRefGoogle Scholar
Apps, J. A., Neil, J. M., and Jun, C.-H., (1989) Thermochemical properties of gibbsite, bayerite, boehmite, diaspore and the aluminate ion between 0 and 350°C: NUREG/CR 5271, Lawrence Berkeley Laboratory LBL–21482, 197.Google Scholar
Bardossy, G., (1982) Karst Bauxites: Developments in Economic Geology, Vol. 15, Elsevier, Amsterdam, 441 pp.Google Scholar
Bardossy, G., and Aleva, G. J. J., (1990) Lateritic Bauxites: Developments in Economic Geology, Vol. 27, Elsevier, Amsterdam, 624 pp.Google Scholar
Chernov, A. A., and Lewis, J., (1967) Computer model of crystallization of binary systems: Kinetic phase transitions: J. Phys. Chem. Solids 28, 21852198.CrossRefGoogle Scholar
Chesworth, W., (1972) The stability of gibbsite and boehmite at the surface of the earth: Clays & Clay Minerals 20, 369374.CrossRefGoogle Scholar
Chesworth, W., (1975) Soil minerals in the system A12O3–SiO2–H2O: Phase equilibrium model: Clays & Clay Minerals 23, 5560.CrossRefGoogle Scholar
Chesworth, W., (1980) The haplosoil system: Am. J. Sci. 280, 969985.CrossRefGoogle Scholar
Chesworth, W., (1994) Mineral metastability in the system Al2O3–SiO2–H2O: A discussion: Clays & Clay Minerals 42, 98101.CrossRefGoogle Scholar
Day, H. W., (1976) A working model of some equilibria in the system alumina-silica-water: Amer. J. Sci. 276, 12541284.CrossRefGoogle Scholar
Haas, J. L., Robinson, G. R., and Hemingway, B. R., (1981) Thermodynamic tabulations for selected phases in the system CaO–Al2O3–SiO2–H2O at 101.325 kPa(1 atm) between 273.15 and 1800 K: J. Phys. Chem. Ref. Data 10, 575669.CrossRefGoogle Scholar
Helgeson, H. C., Delaney, J. M., Nesbitt, H. W., and Bird, D. K., (1978) Summary and critique of the thermodynamic properties of rock-forming minerals: Am. J. Sci. 278A, 1229.Google Scholar
Hemingway, B. S., (1982) Gibbs free energies of formation for bayerite, nordstrandite, Al(OH)2+ and Al(OH)2+, aluminum mobility and the formation of bauxites and laterites: in Adv. Phys. Geochem. 2, S. K. Saxena, ed., Springer-Verlag, New York, 285314.CrossRefGoogle Scholar
Hemingway, B. S., Robie, R. A., and Kittrick, J. A., (1978) Revised values of the Gibbs free energy of formation of [Al(OH)4]aq, diaspore, boehmite and bayerite at 298 K and 1 bar, the thermodynamics of kaolinite to 800°C and 1 bar, and the heat of solution of several gibbsite samples: Geochim. Cosmochim. Acta 42, 15331543.CrossRefGoogle Scholar
Hemingway, B. S., Robie, R. A., and Apps, J. A., (1991) Revised values for the thermodynamic properties of boehmite, AlO(OH), and related species and phases in the system Al–H–O: Am. Mineral. 76, 445457.Google Scholar
Kittrick, J. A., (1969) Soil minerals in the Al2O3–SiO2–H2O system and a theory of their formation: Clays & Clay Minerals 17, 57167.CrossRefGoogle Scholar
Perkins, D., Essene, E. J., Westrum, E. III, and Wall, V. J., (1979) New thermodynamic data for diaspore and their application to the system Al2O3–SiO2–H2O: Amer. Mineral. 64, 10801090.Google Scholar
Robie, R. A., Hemingway, B. S., and Fisher, J. R., (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures: U.S. Geol. Surv. Bull. 1452, 1456.Google Scholar
Robinson, G. R., Haas, J. L. Jr., Schafer, C. M., and Haselton, H. T., (1982) Thermodynamic and thermophysical properties of selected phases in the MgO–SiO2–H2O–CO2, CaO–Al2O3–SiO2–H2O–CO2 and Fe–FeO–Fe2O3–SiO2 chemical systems, with special emphasis on the properties of basalts and their mineral components: U. S. Geol. Surv. Open-File Rept. 83–79, 1429.Google Scholar
Verdes, G., Gout, R., and Castet, S., (1992) Thermodynamic properties of the aluminate ion and of bayerite, boehmite, diaspore and gibbsite: Eur. J. Mineral. 4, 767792.CrossRefGoogle Scholar
Wenk, H.-R., Barber, D. J., and Reeder, R. J., (1983) Microstructures in carbonates: in Carbonates: Mineralogy and Chemistry, Reeder, R. J., ed., Reviews in Mineralogy 11, 301368.CrossRefGoogle Scholar