Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-21T14:15:31.017Z Has data issue: false hasContentIssue false

Magnetic enhancement during the crystallization of ferrihydrite at 25 and 50°C

Published online by Cambridge University Press:  01 January 2024

E. Cabello
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Edificio C4, Campus de Rabanales, 14071 Córdoba, Spain
M. P. Morales
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
C. J. Serna
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
V. Barrón*
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Edificio C4, Campus de Rabanales, 14071 Córdoba, Spain
J. Torrent
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Edificio C4, Campus de Rabanales, 14071 Córdoba, Spain
*
* E-mail address of corresponding author: crlbalov@uco.es

Abstract

Soil formation usually results in an increase in magnetic susceptibility. The magnetic properties of the products of transformation of ferrihydrite, a typical precursor of other soil Fe oxides, were examined in the present work. Synthetic 2-line ferrihydrite was aged at two temperatures (25 and 50°C) and two different relative humidities (80 and 100%) in the presence of silicate, phosphate, citrate, and tartrate as adsorbed ligands (molar anion/Fe ratio = 1–3%). The ligands delayed or prevented the transformation of ferrihydrite to hematite. The magnetic susceptibility of the ferrihydrite transformation products increased with aging, the rate of increase depending on the type of ligand added and its concentration. The largest increase in magnetic susceptibility, sixfold, was obtained with ferrihydrite in a citrate/Fe ratio of 1%, after 1500 days. The resulting magnetic products exihibited superparamagnetic behavior at room temperature and high coercivity at 5 K. The formation of an intermediate ferrimagnetic phase in the ferrihydrite-to-hematite transformation might explain the magnetic enhancement observed in many aerobic soils lacking other sources of magnetic minerals.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrón, V. and Torrent, J., 1986 Use of the Kubelka-Munk theory to study the influence of iron-oxides on soil color Journal of Soil Science 37 499510 10.1111/j.1365-2389.1986.tb00382.x.CrossRefGoogle Scholar
Barrón, V. and Torrent, J., 2002 Evidence for a simple pathway to maghemite in Earth and Mars soils Geochimica et Cosmochimica Acta 66 28012806 10.1016/S0016-7037(02)00876-1.CrossRefGoogle Scholar
Barrón, V. Torrent, J. and de Grave, E., 2003 Hydromaghemite, an intermediate in the hydrothermal transformation of 2-line ferrihidrite into hematite American Mineralogist 88 16791688 10.2138/am-2003-11-1207.CrossRefGoogle Scholar
Batlle, X. and Labarta, A., 2002 Finite-size effects in fine particles: magnetic and transport properties Journal of Physics D — Applied Physics 35 R15R42 10.1088/0022-3727/35/6/201.Google Scholar
Bomatí-Miguel, O. Mazeina, L. Navrotsky, A. and Veintemillas-Verdaguer, S., 2008 Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis Chemistry of Materials 20 591598 10.1021/cm071178o.CrossRefGoogle Scholar
Brunauer, S. Emmett, P.H. and Teller, J., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319 10.1021/ja01269a023.CrossRefGoogle Scholar
Chernyshova, I.V. Hochella, M.F. Jr. and Madden, A.S., 2007 Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition Physical Chemistry Chemical Physics 9 17361750 10.1039/b618790k.CrossRefGoogle ScholarPubMed
Coffey, W.T. Crothers, D.S.F. Kalmykov, Y.u.P. Massawe, E.S. and Waldron, J. T., 1993 Exact analytic formulae for the correlation times for single domain ferromagnetic particles Journal of Magnetism and Magnetic Materials 127 L254L260 10.1016/0304-8853(93)90039-5.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1979 Influence of organic anions on the crystallization of ferrihydrite Clays and Clay Minerals 33 219227 10.1346/CCMN.1985.0330308.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 2003 The Iron Oxides Weinheim, Germany VCH 10.1002/3527602097 573 pp.CrossRefGoogle Scholar
Cullity, B.D., 1972 Introduction to Magnetic Materials Reading, Massachusetts, USA Addison-Wesley Publishing 666 pp.Google Scholar
Duarte, E.L. Itri, R. Lima, E. Baptista, M.S. Berquó, T.S. and Goya, G.F., 2006 Large magnetic anisotropy in ferrihydrite nanoparticles synthesized from reverse micelles Nanotechnology 17 55495555 10.1088/0957-4484/17/22/004.CrossRefGoogle Scholar
Eggleton, R.A. and Fitzpatrick, R.W., 1988 New data and a revised structural model for ferrihydrite Clays and Clay Minerals 36 111124 10.1346/CCMN.1988.0360203.CrossRefGoogle Scholar
Gálvez, N. Barrón, V. and Torrent, J., 1999 Effect of phosphate on the crystallization of hematite, goethite, and lepidocrocite from ferrihydrite Clays and Clay Minerals 47 304311 10.1346/CCMN.1999.0470306.CrossRefGoogle Scholar
Glasauer, S.M. Friedl, J. and Schwertmann, U., 1999 Properties of goethites prepared under acidic and basic conditions in the presence of silicate Journal of Colloid and Interface Science 216 106115 10.1006/jcis.1999.6285.CrossRefGoogle ScholarPubMed
Guardia, P. Batlle-Brugal, B. Roca, A.G. Iglesias, O. Morales, M.P. Serna, C.J. Labarta, A. and Battle, X., 2007 Surfactant effects in magnetite nanoparticles of controlled size Journal of Magnetism and Magnetic Materials 316 E756E759 10.1016/j.jmmm.2007.03.085.CrossRefGoogle Scholar
Jambor, J.L. and Dutrizac, J.E., 1998 Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide Chemical Reviews 98 25492585 10.1021/cr970105t.CrossRefGoogle ScholarPubMed
Janney, D.E. Cowley, J.M. and Buseck, P.R., 2000 Structure of synthetic 2-line ferrihydrite by electron nanodiffraction American Mineralogist 85 11801187 10.2138/am-2000-8-910.CrossRefGoogle Scholar
Janney, D.E. Cowley, J.M. and Buseck, P.R., 2001 Structure of synthetic 6-line ferrihydrite by electron nanodiffraction American Mineralogist 86 327335 10.2138/am-2001-2-316.CrossRefGoogle Scholar
Jansen, E. Kyek, A. Schäfer, W. and Schwertmann, U., 2002 The structure of six-line ferrihydrite Applied Physics A. Materials Science & Processing A74 A1004S1006 10.1007/s003390101175.CrossRefGoogle Scholar
Lippens, B.C. and de Boer, J.H., 1965 Studies on pore systems in catalysts. V. The t method Journal of Catalysis 4 319323 10.1016/0021-9517(65)90307-6.CrossRefGoogle Scholar
Liu, Q.S. Barrón, V. Torrent, J. Eeckhout, S.G. and Deng, C.L., 2008 Magnetism of intermediate hydromaghemite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications Journal of Geophysical Research — Solid Earth 113 B01103.Google Scholar
Manceau, A. and Gates, W.P., 1997 Surface structural model for ferrihydrite Clays and Clay Minerals 45 448460 10.1346/CCMN.1997.0450314.CrossRefGoogle Scholar
McHale, J.M. Auroux, A. Perrotta, A.J. and Navrotsky, A., 1997 Surface energies and thermodynamic phase stability in nanocrystalline aluminas Science 277 788791 10.1126/science.277.5327.788.CrossRefGoogle Scholar
Michel, F.M. Ehm, L. Antao, S.M. Lee, P.L. Chupas, P.J. Liu, G. Strongin, D.R. Schoonen, M.A.A. Phillips, B.L. and Parise, J.B., 2007 The structure of ferrihydrite, a nanocrystalline material Science 316 17261729 10.1126/science.1142525.CrossRefGoogle ScholarPubMed
Michel, F.M. Ehm, L. Liu, G. Han, W.Q. Antao, S.M. Chupas, P.J. Lee, P.L. Knorr, K. Euler, H. Kim, J. Grey, C.P. Celestian, A.J. Gillow, J. Schoonen, M.A.A. Strongin, D.R. and Parise, J.B., 2007 Similarities in 2- and 6-line ferrihydrite based on pair distribution function analysis of X-ray total scattering Chemistry of Materials 19 14891496 10.1021/cm062585n.CrossRefGoogle Scholar
Morales, M.P. Veintemillas-Verdaguer, S. Montero, M.I. Serna, C.J. Roig, A. Casas, L. Martínez, B. and Sandiumenge, F., 1999 Surface and internal spin canting in gamma-Fe2O3 nanoparticles Chemistry of Materials 11 30583064 10.1021/cm991018f.CrossRefGoogle Scholar
Navrotsky, A. Mazeina, L. and Majzlan, J., 2008 Size-driven structural and thermodynamic complexity in iron oxides Science 319 16351638 10.1126/science.1148614.CrossRefGoogle ScholarPubMed
Reeves, N.J. and Mann, S., 1991 Influence of inorganic and organic additives on the tailored synthesis of iron oxides Journal of the Chemical Society — Faraday Transactions 87 38753880 10.1039/ft9918703875.CrossRefGoogle Scholar
Schwertmann, U., Stucki, J.W. Goodman, B.A. and Schwertmann, U., 1985 Occurrence and formation of iron oxides in various pedoenvironments Iron in Soils and Clay Minerals The Netherlands Dordrecht 267308.Google Scholar
Silva, N.J.O. Amaral, V.S. Carlos, L.D. Rodríguez-González, B. Liz-Marzán, L.M. Millán, A. Palacio, F. and de Bermúdez, V. Zea, 2006 Structural and magnetic studies in ferrihydrite nanoparticles formed within organic-inorganic hybrid matrices Journal of Applied Physics 100 054301054307 10.1063/1.2336083.CrossRefGoogle Scholar
Torrent, J. and Guzmán, R., 1982 Crystallization of Fe (III)-oxides from ferrihydrite in salt solutions: osmotic and specific ion effects Clay Minerals 17 463469 10.1180/claymin.1982.017.4.09.CrossRefGoogle Scholar
Torrent, J. Guzmán, R. and Parra, M.A., 1982 Influence of relative-humidity on the crystallization of Fe(III) oxides from ferrihydrite Clays and Clay Minerals 30 337340 10.1346/CCMN.1982.0300503.CrossRefGoogle Scholar
Torrent, J. Barrón, V. and Liu, Q., 2006 Magnetic enhancement is linked to and precedes hematite formation in aerobic soil Geophysical Research Letters 33 L02401 10.1029/2005GL024818.CrossRefGoogle Scholar
Torrent, J. Liu, Q. Bloemendal, J. and Barrón, V., 2007 Magnetic enhancement and iron oxides in the upper Louchuan loess-paleosol sequence, Chinese Loess Plateau Soil Science Society of America Journal 71 15701578 10.2136/sssaj2006.0328.CrossRefGoogle Scholar
Vestal, C.R. and Zhang, Z.J., 2003 Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles Journal of the American Chemical Society 125 98289833 10.1021/ja035474n.CrossRefGoogle ScholarPubMed
Wilke, M. Farges, F. Petit, P.-E. Brown, G.E. Jr. and Martin, F., 2001 Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study American Mineralogist 86 714730 10.2138/am-2001-5-612.CrossRefGoogle Scholar
Zergenyi, R.S. Hirt, A.M. Zimmermann, S. Dobson, J.P. and Lowrie, W., 2000 Low-temperature magnetic behavior of ferrihydrite Journal of Geophysical Research — Solid Earth 105 82978303 10.1029/1999JB900315.CrossRefGoogle Scholar
Zhao, J. Huggins, F.E. Feng, Z. and Huffman, G.P., 1994 Ferrihydrite: surface structure and its effects on phase transformation Clays and Clay Minerals 42 737746 10.1346/CCMN.1994.0420610.Google Scholar