Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T02:28:28.577Z Has data issue: false hasContentIssue false

Low-Temperature Acid Weathering in Newhaven, Sussex, United Kingdom, and Its Application to Theoretical Modeling in Radioactive Waste-Disposal Sites

Published online by Cambridge University Press:  28 February 2024

Thierry De Putter
Affiliation:
Faculté Polytechnique de Mons, Géologie Fondamentale et Appliquée, 9 rue de Houdain, B-7000 Mons, Belgium
Alain Bernard
Affiliation:
Université Libre de Bruxelles, Géochimie et Minéralogie, CP 160/02, 50, av. F. Roosevelt, B-1050 Bruxelles, Belgium
Alain Perruchot
Affiliation:
Université de Paris-Sud, Géochimie des Roches Sédimentaires, UMR-CNRS 8616, bâtiment 504, F-91405 Orsay cedex, France
Dominique Nicaise
Affiliation:
Faculté Polytechnique de Mons, Géologie Fondamentale et Appliquée, 9 rue de Houdain, B-7000 Mons, Belgium
Christian Dupuis
Affiliation:
Faculté Polytechnique de Mons, Géologie Fondamentale et Appliquée, 9 rue de Houdain, B-7000 Mons, Belgium

Abstract

Tertiary weathered sediments located immediately to the west of the harbor at Newhaven, Sussex, UK, were investigated by examination of major and trace elements by scanning electron microscope (SEM), microprobe, and inductively coupled plasma mass spectrometer (ICP-MS), and the mineralogy was studied by optical petrography, X-ray diffraction (XRD), transmission electron microscope (TEM), selective leaching, and thermodynamic modeling. Studied outcrops experienced acid leaching by sulfuric acid percolating downward through Tertiary sediments overlying Cretaceous chalk. The progressive neutralization of the percolating acid fluids resulted in “sequentially” layered neoformation of minerals: jarosite, iron oxides, aluminous minerals (sulfates, oxyhydroxides), gypsum, and Fe-Mn oxides. Substantial agreement was found between field observations and mineral assemblages obtained by modeling with the program CHILLER. These results suggest that the initial assumptions on the weathering process and mechanisms are correct. The relevance and implications of this study in the modeling of future denudation and weathering processes of radioactive waste-disposal sites (both deeply buried sites for high-leveI waste and surface sites for low-level waste) are discussed. Neoformed phases, such as jarosite, aluminous minerals, and silico-aluminous gels may play a significant role in the efficient trapping of mobilized pollutant radionuclides.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Africano, F. and Bernard, A., 2000 Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan Journal of Volcanology and Geothermal Research .CrossRefGoogle Scholar
Aja, S.U., 1998 The sorption of the rare earth element, Nd, onto kaolinite at 25°C Clays and Clay Minerals 46 103109 10.1346/CCMN.1998.0460112.CrossRefGoogle Scholar
Andrews, J.E. Brimblecombe, P. Jickells, T.D. and Liss, P.S., 1996 An Introduction to Environmental Chemistry Oxford Blackwell.Google Scholar
Baron, D. and Palmer, C.D., 1996 Solubility of jarosite at 4–35°C Geochimica et Cosmochimica Acta 60 185195 10.1016/0016-7037(95)00392-4.CrossRefGoogle Scholar
Bernard, A. Jedwab, J. Van Moer, A. and Yourassowsky, N., 1997 Rapport de Recherche: Le Piégeage de l’lode Radioactif .Google Scholar
Bone, D.A., 1976 The Tertiary deposits at Newhaven, Sussex Tertiary Research 1 4749.Google Scholar
Bonneau, M. Souchier, B., Duchaufour, P. and Souchier, B., 1979 Constituants et propriétés du sol Pédologie Paris Masson 3235.Google Scholar
Brouard, E., 1992 Etude des cryptokarsts tertiaires de la Forêt de la Bessède (Périgord, France) et de l’Entre-Sambre-et-Meuse (Belgique): Lithologie, géochimie, néogenèse et évolution des systèmes karstiques .Google Scholar
Carson, C.D. Fanning, D.S. Dixon, J.B., Kittrick, J.A. Fanning, D.S. and Hossner, L.R., 1982 Alfisols and ultisols with acid sulfate weathering features in Texas Acid Sulfate Weathering Wisconsin Madison 127146.Google Scholar
Churchman, G.J. Whitton, J.S. Claridge, G.G.C. and Theng, B.K.G., 1984 Intercalation method using formamide for differentiating halloysite from kaolinite Clays and Clay Minerals 32 241248 10.1346/CCMN.1984.0320401.CrossRefGoogle Scholar
Delmelle, P. and Bernard, A., 1994 Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia Geochimica et Cosmochimica Acta 58 24452460 10.1016/0016-7037(94)90023-X.CrossRefGoogle Scholar
De Putter, T.h. and Charlet, J.-M., 1994 Analogies Naturelles en Milieu Argileux .Google Scholar
De Putter, T.h. André, L. Bernard, A. Charlet, J.-M. Dupuis, C.h. Jedwab, J. Nicaise, D. Perruchot, A. and Quinif, Y., 1997 Analogies Naturelles et Archeologiques de Surface-Apports de la Géochimie de l’Altération et de l’Étude de la Durabilité des Matériaux à la Sûreté de l’Évacuation de Surface des Déchets Radioactifs de Faible Activité .Google Scholar
De Putter, T.h. Charlet, J.-M. and Quinif, Y., 1999 REE, Y and U concentration at the fluid-iron oxide interface in Late Cenozoic cryptodolines from Southern Belgium Chemical Geology 153 139150 10.1016/S0009-2541(98)00156-9.CrossRefGoogle Scholar
Dupuis, C. and Gruas-Cavagnetto, C., 1996 The Woolwich Beds and the London Clay of Newhaven (East Sussex): New palynological and stratigraphical data The London Naturalist 75 2739.Google Scholar
Fournier, R.O., 1985 The behavior of silica in hydrothermal solutions Reviews in Economic Geology 2 4560.Google Scholar
Herbert, R.B., 1997 Properties of goethite and jarosite precipitated from acidic groundwater, Dalama, Sweden Clays and Clay Minerals 45 261273 10.1346/CCMN.1997.0450214.CrossRefGoogle Scholar
Kargbo, D.M. Fanning, D.S. Inyang, H.I. and Duell, R.W., 1993 Environmental significance of acid sulfate “clays” as waste covers Environmental Geology 22 218226 10.1007/BF00767407.CrossRefGoogle Scholar
Nicaise, D. De Putter, T.h. André, L. Jedwab, J. and Dupuis, C., 1996 Néoformation de phosphates nanométriques de terres rares en altération acide de basse température: Implications pour le piégeage des terres rares, de l’uranium et du thorium Comptes-Rendus de l’Académic des Sciences de Paris 323 113120.Google Scholar
Nordstrom, D.K., Kittrick, J.A. Fanning, D.S. and Hossner, L.R., 1982 Aqueous pyrite oxidation and the consequent formation of secondary iron minerals Acid Sulfate Weathering Wisconsin Madison 3755.Google Scholar
Perruchot, A. Delbove, F. Paulus, J.M. and Adloff, J.P., 1992 Behaviour of uranyl and neptunyl cations during ion exchange between silicate gels pSiO2-(A,B)-nH2O and aqueous solutions (A2+, B2+) (A2+ = UO2 2+, NpO2 2+; B2+ = Mg2+, Ca2+, Ni2+): An experimental study Applied Geochemistry 1 95107 10.1016/S0883-2927(09)80066-8.CrossRefGoogle Scholar
Reed, M.H., 1982 Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase Geochimica et Cosmochimica Acta 46 513528 10.1016/0016-7037(82)90155-7.CrossRefGoogle Scholar
Reed, M.H. and Spycher, N., 1984 Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution Geochimica et Cosmochimica Acta 48 14791492 10.1016/0016-7037(84)90404-6.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat Lösung Zeitschrift für Pflanzenemahrung und Bodenkunde 105 194202 10.1002/jpln.3591050303.CrossRefGoogle Scholar
Spycher, N. and Reed, M.H., 1989 CHILLER: A program for computing water-rock reactions, boiling, mixing and other reaction processes in aqueous-mineral-gas systems (revised preliminary edition) Eugene Department of Geological Sciences, University of Oregon.Google Scholar
Stumm, W. and Morgan, J.J., 1996 Aquatic Chemistry—Chemical Equilibria and Rates in Natural Waters New York Wiley.Google Scholar
Van Breemen, N., Kittrick, J.A. Fanning, D.S. and Hossner, L.R., 1982 Genesis, morphology and classification of acid sulfate soils in coastal plains Acid Sulfate Weathering Wisconsin Madison 95108.Google Scholar
Wada, K., Mortland, M.M. and Farmer, V.C., 1979 Structural formulas of allophanes Proceedings of the International Clay Conference (Oxford) Amsterdam Elsevier 537545.Google Scholar
Wada, K., Olphen, H. v. and Veniale, F., 1982 Amorphous clay minerals—chemical composition, crystalline state, synthesis and surface properties Proceedings of the International Clay Conference (Bologna) Amsterdam Elsevier 385398.Google Scholar
Wilmot, R.D. and Young, B., 1985 Aluminite and other aluminium minerals from Newhaven, Sussex: The first occurrence of norstrandite in Great Britain Proceedings of the Geological Association 96 4752 10.1016/S0016-7878(85)80013-4.CrossRefGoogle Scholar