Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T20:04:00.148Z Has data issue: false hasContentIssue false

Local Order of the Transition Metals for the Substitution (Co1−yCuy)2Al(OH)6Cl·nH2O (0 ⩽ y ⩽ 1) in a Copper-Aluminum-Layered Double Hydroxide-Like Phase

Published online by Cambridge University Press:  01 January 2024

Fabrice Leroux*
Affiliation:
Laboratoire des Matériaux Inorganiques, CNRS-UPRES-A no 6002, Université Blaise Pascal, 63177 Aubière cédex, France
El Mostafa Moujahid
Affiliation:
Laboratoire des Matériaux Inorganiques, CNRS-UPRES-A no 6002, Université Blaise Pascal, 63177 Aubière cédex, France
Hervé Roussel
Affiliation:
LURE, Centre Universitaire Paris Sud, Bât 209D, BP 34, 91898 Orsay cédex, France
Anne-Marie Flank
Affiliation:
LURE, Centre Universitaire Paris Sud, Bât 209D, BP 34, 91898 Orsay cédex, France
Valérie Briois
Affiliation:
LURE, Centre Universitaire Paris Sud, Bât 209D, BP 34, 91898 Orsay cédex, France
Jean-Pierre Besse
Affiliation:
Laboratoire des Matériaux Inorganiques, CNRS-UPRES-A no 6002, Université Blaise Pascal, 63177 Aubière cédex, France
*
*E-mail address of corresponding author: fleroux@chimtp.univ-bpclermont.fr

Abstract

The substitution in layered double hydroxide-like phases (LDH) of composition (Co1−y2+Cuy2+)2Al3+(OH)6Cl−⋅nH2O(0⩽y⩽1) was studied by X-ray diffraction and X-ray absorption spectroscopy. It was found that the lamellar character is maintained over the entire range of the substitution. The local order for the composition {Co2Al} is typical of brucite-like sheets, whereas segregation into small domains may explain the results obtained when the percentage of Cu atoms is increased. The {Cu2Al} end-member material presents a local order around the Cu atoms closely related to the botallackite structure as present in basic layered Cu salts, with the presence of two distinct Cu-Cu distances.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, P. Ammundsen, B. Jones, D.J. Burns, G. and Rozière, J., (1999) Cobalt substitution in lithium manganate spinels: examination of local structure and lithium extration by XAFS Journal of Material Chemistry 9 31253130 10.1039/a905784f.CrossRefGoogle Scholar
Alberding, N. and Crozier, E.D., (1983) Multiple scattering and disorder in extended X-ray absorption fine structure analysis Physical Reviews B 27 33743382 10.1103/PhysRevB.27.3374.CrossRefGoogle Scholar
Alejandre, A. Medina, H. Salagre, P. Correig, X. and Sueiras, J.E., (1999) Preparation and study of Cu-Al mixed oxides via hydrotalcite-like precursors Chemistry of Materials 11 939948 10.1021/cm980500f.CrossRefGoogle Scholar
Bellotto, M. Rebours, B. Clause, O. Lynch, J. Bazin, D. and Elkaïm, E., (1996) A reexamination of hydrotalcite crystal chemistry Journal of Physical Chemistry 100 85278534 10.1021/jp960039j.CrossRefGoogle Scholar
Besserguenev, A.V. Fogg, A.M. Francis, R.J. Price, S.J. and O’Hare, D., (1997) Synthesis an structure of gibbsite intercalation compounds [LiAl2(OH)6]X X=Cl, Br, NO3 and [LiAl2(OH)6]Cl. H2O using synchrotron X-ray and neutron powder diffraction Chemistry of Materials 9 241247 10.1021/cm960316z.CrossRefGoogle Scholar
Bookin, A.S. Cherkashin, V.I. and Drits, V.A., (1993) Polytype diversity of the hydrotalcite-like minerals. II Determination of the polytypes of experimentally studied varieties Clays and Clay Minerals 41 558564 10.1346/CCMN.1993.0410505.CrossRefGoogle Scholar
Carrado, K.A. and Wasserman, S.R., (1996) Stability of Cu(II) and Fe(III) porphyrins on montmorillonite clay: an X-ray absorption study Chemistry of Materials 8 219225 10.1021/cm950330w.CrossRefGoogle Scholar
Fragnaud, P. Prouzet, E. Ouvrard, G. Mansot, J.-L. Payen, C. Brec, R. and Dexpert, H., (1993) Room temperature synthesis study of highly disordered a-Ni2P2S6 Journal of Non-crystalline Solids 160 117 10.1016/0022-3093(93)90278-6.CrossRefGoogle Scholar
Fujita, W. Awaga, K. and Yokoyama, T., (1997) EXAFS study of two dimensional hybrid nanocomposites, Cu2(OH)3(n-CmH2m+1COO) (m=0,1,7,8,9): structural modification in the inorganic layer induced by the interlayer organic molecule Inorganic Chemistry 36 196199 10.1021/ic960787n.CrossRefGoogle Scholar
Hofmeister, W. and Von Platen, H., (1992) Crystal chemistry and atomic order in brucite-related double-layer structures Crystal Review 3 329 10.1080/08893119208032964.CrossRefGoogle Scholar
Jiménez-Lopez, A. Rodriguez-Castellon, R. Olivera-Pastor, P. Maireles-Torres, P. Tomlinson, A.A.G. Jones, D.J. and Rozière, J., (1993) Layered basic copper anion exchangers: chemical characterisation and X-ray absorption study Journal of Materials Chemistry 3 303307 10.1039/JM9930300303.CrossRefGoogle Scholar
Kamath, P.V. Therese, G.H. and Gopalakrishnan, J., (1997) On the existence of hydrotalcite-like phases in the absence of trivalent cations Journal of Solid State Chemistry 128 3841 10.1006/jssc.1996.7144.CrossRefGoogle Scholar
Kloprogge, J.T. and Frost, R.L., (1999) Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites Journal of Solid State Chemistry 146 506515 10.1006/jssc.1999.8413.CrossRefGoogle Scholar
Köckerling, M. Geismar, G. Henkel, G. and Nolting, H.-F., (1997) X-ray absorption spectroscopic studies on copper-containing hydrotalcite Journal of the Chemical Society, Faraday Transactions 93 481484 10.1039/a605289d.CrossRefGoogle Scholar
Leroux, F. Piffard, Y. Ouvrard, G. Mansot, J.-L. and Guyomard, D., (1999) New amorphous mixed transition metal oxides and their Li derivatives: synthesis, characterization, and electrochemical behavior Chemistry of Materials 11 29482959 10.1021/cm991074g.CrossRefGoogle Scholar
Leroux, F. Adachi-Pagano, M. Intissar, M. Chauvière, S. Forano, C. and Besse, J.-P., (2001) Delamination and restacking of layered double hydroxides Journal of Materials Chemistry 11 105112 10.1039/b002955f.CrossRefGoogle Scholar
Leroux, F. Moujahid, E.M. Taviot-Guého, C. and Besse, J.-P., (2001) Effect of layer charge modification for Co-Al layered double hydroxides: study by X-ray absorption spectroscopy Solid State Sciences 3 8192 10.1016/S1293-2558(00)01119-5.CrossRefGoogle Scholar
Malherbe, F., Bigey, L., Forano, C., de Roy, A. and Besse, J.-P. (1999) Structural aspects and thermal properties of takovite-like layered double hydroxides pillared with chromium oxo-anions. Journal of the Chemical Society, Dalton Transactions, 38313839.CrossRefGoogle Scholar
Manceau, A. and Calas, G., (1986) Nickel-bearing clay minerals: II Intracrystalline distribution of nickel: an X-ray absorption study Clay Minerals 21 341360 10.1180/claymin.1986.021.3.07.CrossRefGoogle Scholar
McKale, A.G. Veal, B.W. Paulikas, A.P. Chan, S.-K. and Knapp, G.S., (1988) Improved ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy Journal of the American Chemical Society 110 37633768 10.1021/ja00220a008.CrossRefGoogle Scholar
Miyata, S., (1983) Anion-exchange properties of hydrotalcitelike compounds Clays and Clay Minerals 31 305311 10.1346/CCMN.1983.0310409.CrossRefGoogle Scholar
O’Neill, HStC, (1994) Temperature dependence of the cation distribution in CoAl2O4 spinel European Journal of Mineralogy 6 603609 10.1127/ejm/6/5/0603.CrossRefGoogle Scholar
Prévot, V. Forano, C. and Besse, J.-P., (2001) Hybrid derivatives of layered double hydroxides Applied Clay Science 18 315 10.1016/S0169-1317(00)00025-9.CrossRefGoogle Scholar
Rajamathi, M. Kamath, V. and Seshadri, R., (2000) Polymorphism in nickel hydroxide: role of interstratification Journal of Material Chemistry 10 503506 10.1039/a905651c.CrossRefGoogle Scholar
Roussel, H. Briois, V. Elkaïm, V. de Roy, A. and Besse, J.-P., (2000) Cationic order and structure of [Zn-Cr-Cl] and [Cu-Cr-Cl] layered double hydroxides: an XRD and EXAFS study Journal of Physical Chemistry B 104 59155923 10.1021/jp0000735.CrossRefGoogle Scholar
Sakharov, B.A. Lindgreen, H. Salyn, A.L. and Drits, V.A., (1999) Mixed-layer kaolinite-illite-vermiculite in North Sea shales Clay Minerals 34 333344 10.1180/000985599546136.CrossRefGoogle Scholar
Shimizu, K. Maeshima, H. Yoshida, H. Satsuma, A. and Hattori, T., (2000) Spectroscopic characterisation of Cu-Al2O3 catalysts for selective reduction of NO with propene Physical Chemistry Chemical Physics 2 24352439 10.1039/b000943l.CrossRefGoogle Scholar
Singh, B. Sherma, D.M. Gilkes, R.J. Wells, M. and Mosselmans, J.F.W., (2000) Structural chemistry of Fe, Mn and Ni in synthetic hematites as determined by extended X-ray absorption fine structure spectroscopy Clays and Clay Minerals 48 521528 10.1346/CCMN.2000.0480504.CrossRefGoogle Scholar
Thiel, J.-P. Chiang, C.K. and Poeppelmeier, K.R., (1993) Structure of LiAl2(OH)7. 2H2O Chemistry of Materials 5 297304 10.1021/cm00027a011.CrossRefGoogle Scholar
Thompson, H.A. Parks, G.A. and Brown, G.E. Jr, (1999) Ambient-temperature synthesis, evolution, and characterization of cobalt-aluminum hydrotalcite-like solids Clays and Clay Minerals 47 425438 10.1346/CCMN.1999.0470405.CrossRefGoogle Scholar
Trombetta, M. Ramis, G. Busca, G. Montanari, B. and Vaccari, A., (1997) Ammonia adsorption and oxidation on Cu/Mg/Al mixed oxide catalysts prepared via hydrotalcitetype precursors Langmuir 13 46284637 10.1021/la960673o.CrossRefGoogle Scholar
Vucelic, M. Jones, W. and Moggridge, G.D., (1997) Cation ordering in synthetic layered double hydroxides Clays and Clay Minerals 45 803813 10.1346/CCMN.1997.0450604.CrossRefGoogle Scholar
Velu, S. Sabde, D.P. Shah, N. and Sivasanker, S., (1998) New hydrotalcite-like anionic clays containing Zr4+ in the layers: synthesis and physicochemical properties Chemistry of Materials 10 34513458 10.1021/cm980185x.CrossRefGoogle Scholar