Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T04:54:28.937Z Has data issue: false hasContentIssue false

Lithium-Bearing Donbassite and Tosudite from Echassières, Massif Central, France

Published online by Cambridge University Press:  02 April 2024

T. Merceron
Affiliation:
Université de Poitiers, Laboratoire de Petrologie des Altérations Hydrothermales, U.A. 721 au C.N.R.S., 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
A. Inoue*
Affiliation:
Université de Poitiers, Laboratoire de Petrologie des Altérations Hydrothermales, U.A. 721 au C.N.R.S., 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
A. Bouchet
Affiliation:
Université de Poitiers, Laboratoire de Petrologie des Altérations Hydrothermales, U.A. 721 au C.N.R.S., 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
A. Meunier
Affiliation:
Université de Poitiers, Laboratoire de Petrologie des Altérations Hydrothermales, U.A. 721 au C.N.R.S., 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
*
1Permanent address: Geological Institute, College of Arts & Sciences, Chiba University, Chiba 260, Japan.

Abstract

Lithium-bearing donbassite and tosudite were found in veins in hydrothermally altered granite (Beauvoir granite) in the northern part of the Massif Central, France. The two minerals are characterized by their high Li contents and low Mg and Fe contents; their structural formulae are: $${\left( {S{i_{3.81}}A{l_{0.19}}} \right)_{\Sigma = 4.00}}{O_{10}}{\left( {A{l_{3.81}}L{i_{0.52}}Fe_{0.01}^{2 + }C{a_{0.02}}M{g_{0.01}}} \right)_{\Sigma - 4.38}}{\left( {OH} \right)_8}{\left( {N{a_{0.07}}{K_{0.04}}} \right)_{\Sigma = 0.11}}$$ for donbassite and $${\left( {S{i_{3.50}}A{l_{0.50}}} \right)_{\Sigma = 4.00}}{O_{10}}{\left( {A{l_{2.95}}L{i_{0.22}}Fe_{0.01}^{3 + }T{i_{0.01}}} \right)_{\Sigma = 3.19}}{\left( {OH} \right)_5}{\left( {C{a_{0.01}}N{a_{0.15}}{K_{0.18}}} \right)_{\Sigma = 0.34}}$$ for tosudite.

These chemical compositions indicate that the donbassite is an intermediate member of the donbassite-cookeite solid solution series and that the tosudite consists of interstratified Li-donbassite and beidellite. Both Li-bearing minerals show thermal behavior distinct from those previously reported for dioctahedral chlorite and tosudite.

Petrographie investigation of drill cuttings from the Echassières area indicates that the two minerals were formed in an intermediate stage of hydrothermal alteration following an early stage characterized by formation of muscovite (2M1) at >350°C and before the latest stage characterized by deposition of kaolinite and randomly interstratified illite/smectite at < 100°C. Moreover, tosudite occurs in the upper part of the granite, whereas donbassite is restricted to the lower part, suggesting the formation of tosudite at lower temperatures.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrova, V. A., Drits, V. A. and Sokolova, G. V., 1972 Structural features of dioctahedral one packet chlorite Sov. Phys. Crystallogr. 17 456461.Google Scholar
Bailey, S.W. and Gieseking, J. E., 1975 Chlorites Soil Components, Vol. 2, Inorganic Components New York Springer-Verlag 191263.CrossRefGoogle Scholar
Bailey, S. W., 1980 Summary of recommendations of AI-PEA Nomenclature Committee Can. Mineral. 18 143150.Google Scholar
Bailey, S. W., Brindley, G. W., Kodama, H. and Martin, R. T., 1982 Report of The Clay Minerals Society nomenclature committee for 1980 and 1981 Clays & Clay Minerals 30 7678.CrossRefGoogle Scholar
Beaufort, D., Dudoignon, P., Proust, D., Parneix, J. C. and Meunier, A., 1983 Microdrilling in thin section: A useful method for the identification of clay minerals in situ Clay Miner. 18 219222.CrossRefGoogle Scholar
Brown, G., Bourguignon, P. and Thorez, J., 1974 Alithium bearing aluminium regular mixed-montmorillonite-chlo-rite from Huy, Belgium Clay Miner. 10 135144.CrossRefGoogle Scholar
Černy, P., 1970 Compositional variations in cookeite Can. Mineral. 10 636647.Google Scholar
Creach, M., Meunier, A. and Beaufort, D., 1986 Tosudite crystallization in the kaolinized granitic cupola of Monte-bras, Creuse, France Clay Miner. 21 225230.CrossRefGoogle Scholar
Cuney, M., Autran, A., Burnol, L., Brouand, M., Dudoignon, P., Feybesse, L., Gagny, C., Jacquot, T., Kosakevitch, A., Martin, P., Meunier, A., Monier, G. and Tegyey, M., 1986 Résultats préliminaires apportés par le sondage GPF sur la coupole de granite albitique à topaze-lépidolite de Beauvoir (Massif Central, France) C.R. Acad. Sci. Parisi 569574.Google Scholar
Dudoignon, P. and Meunier, A., 1984 La kaolinization de l’apex granitique d’Echassières: Un cas complexe de superposition d’altérations hydrothermales et météoriques Coll. Nat. Programme Géologie Profonde de la France. Doc. BRGM 81 87107.Google Scholar
Eberl, D., 1978 The reaction of montmorillonite to mixed-layer clay: The effect of interlayer alkali and alkaline earth cations Geochim. Cosmochim. Acta 42 17.CrossRefGoogle Scholar
EberI, D., 1978 Reaction series for dioctahedral smectites Clays & Clay Minerals 26 327340.CrossRefGoogle Scholar
Figueiredo Gomes, C. S., 1967 Alteration of spodumene and lepidolite with formation of dioctahedral chlorite plus dioctahedral chlorite-dioctahedral montmorillonite inter-stratifications Mem. Notic. Mus. Mineral. Univ. Coimbra (Portugal) 64 3257.Google Scholar
Foord, E., Starkey, H. and Taggart, J., 1986 Mineralogy and paragenesis of pocket clays and associated minerals in complex granitic pegmatites, San Diego County, California Amer. Mineral. 71 428439.Google Scholar
Fransolet, A. M. and Bourguignon, P., 1978 Di/triocta-hedral chlorite in quartz veins from the Ardenne, Belgium Can. Mineral. 16 365373.Google Scholar
Fransolet, A. M. and Schreyer, W., 1984 Sudoite, di/trioc-tahedral chlorite: A stable low-temperature phase in the system MgO-Al2O3-SiO2-H2O Contrib. Miner. Petrol. 86 409417.CrossRefGoogle Scholar
Fujii, N., Omori, T. and Fujinuki, T., 1971 Dioctahedral chlorite presumably originated from pyrophyllite, from the Shynio mine, Nagano Prefecture, central Japan Soc. Mining Geologists Japan Spec. Issue 2 183190.Google Scholar
Hayashi, H. and Oinuma, K., 1964 Aluminian chlorite from Kamikita mine, Japan Clay Sci. 1 2230.Google Scholar
Hayashi, H. and Oinuma, K., 1965 Relationship between infrared absorption spectra in the region of 450–900 cm−1 and chemical composition of chlorite Amer. Mineral. 50 476483.Google Scholar
Hayashi, H. and Oinuma, K., 1967 Si-O absorption band near 1000 cm−1 and OH absorption bands of chlorite Amer. Mineral 52 12061210.Google Scholar
Henmi, K. and Yamamoto, T., 1965 Dioctahedral chlorite (sudoite) from Itaya, Okayama Prefecture, Japan Clay Sci. 2 92101.Google Scholar
Ichikawa, A. and Shimoda, S., 1976 Tosudite from the Hokuno mine, Hokuno, Gifu Prefecture, Japan Clays & Clay Minerals 24 142148.CrossRefGoogle Scholar
Lazarenko, E. K., 1940 Donbassites, a new group of minerals from the Donetz basin C.R. Acad. Sci. U.S.S.R. 28 509521.Google Scholar
Loskutov, A. V., 1959 Donbassite from Novaya Zemlya Miner. Postmagmat. Prots., Leningrad Univ. Sbornik 190194.Google Scholar
Maksimovic, Z. and Brindley, G. W., 1980 Hydrothermal alteration of a serpentine near Takovo, Yugoslavia, to chromium bearing illite/smectite, kaolinite, tosudite, and hal-loysite Clays & Clay Minerals 28 295302.CrossRefGoogle Scholar
Matsuda, T. and Henmi, K., 1973 Hydrothermal behaviour of an interstratified mineral from the mine of Ebara, Hyogo Prefecture, Japan. (An example of changes from randomly interstratified clay mineral to regular one) J. Mineral. Soc. Japan 11 8794.Google Scholar
Müller, G., 1967 Sudoit (“dioktaedrischer Chlorit”, “Al-chlorit”) im Cornberger Sandstein von Cornberg Hessen Contrib. Mineral. Petrol. 14 176189.CrossRefGoogle Scholar
Newman, A. C. D. Brown, G. and Newman, A. C. D., 1987 The chemical constitution of clays Chemistry of Clays and Clay Minerals London Mineralogical Society 1129.Google Scholar
Nishiyama, T., Shimoda, S., Shimosaka, K. and Kanaoka, S., 1975 Lithium-bearing tosudite Clays & Clay Minerals 23 337342.CrossRefGoogle Scholar
Reynolds, R. C., 1985 Newmode, Computer Program for the Calculation of One-Dimensional Diffraction Patterns of Mixed-Layered Clays .Google Scholar
Schultz, L. G. (1963) Clay minerals in Triassic rocks of the Colorado Plateau: U.S. Geol. Surv. Bull. 1147–C, 71 pp.Google Scholar
Shimoda, S., 1969 New data for tosudite Clays & Clay Minerals 17 179184.CrossRefGoogle Scholar
Sudo, T., Sudo, T. and Shimoda, S., 1978 An outline of clays and clay minerals in Japan Clays and Clay Minerals of Japan Amsterdam Elsevier 1103.Google Scholar
Sudo, T., Sato, M. and Heller, L., 1966 Dioctahedral chlorite Proc. Int. Clay Conf, Jerusalem, 1966, Vol. 1 Jerusalem Israel Universities Press 3339.Google Scholar
Sudo, T. and Shimoda, S., 1978 Clays and Clay Minerals of Japan Amsterdam Elsevier.Google Scholar
Sudo, T., Takahashi, H. and Matsui, H., 1954 Long spacing of 30 Â from a fire clay Nature 173 161.CrossRefGoogle Scholar
Turpault, M. P., Beaufort, D. and Meunier, A., 1986 Identification des minéraux d’altération et de leur distribution dans le sondage GPF 3 (Cézallier) Doc. BRGM 105 149184.Google Scholar
Van Oosterwyck-Gastuche, M. C. and Deliens, M., 1968 Sur l’existence d’une chlorite aluminifère au camp d’Atondo (Maniema, Rép. Dém. du Congo) Bull. Gp. Fr. Arg. 20 187204.Google Scholar
Velde, B., 1984 Electron microprobe analysis of clay minerals Clay Miner. 19 243247.CrossRefGoogle Scholar