Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T10:26:58.030Z Has data issue: false hasContentIssue false

Layered Double Hydroxide-Based MRI/CT Dual Modal Contrasting Agent With Homogeneous Particle Size

Published online by Cambridge University Press:  01 January 2024

Sang-Yong Jung
Affiliation:
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
Jin Kuen Park*
Affiliation:
Department of Chemistry, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea
Jae-Min Oh*
Affiliation:
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
*
*E-mail address of corresponding author: jinkpark@hufs.ac.kr
*E-mail address of corresponding author: jinkpark@hufs.ac.kr

Abstract

The development of nanoparticles incorporating Gd3+ has attracted interest in the field of contrasting nanomedicine for magnetic resonance (MR) and computed tomography (CT). In order to achieve an effective contrasting performance, the amount and stability of Gd incorporated as well as particle-size control of the nanoparticles should be considered simultaneously. In the current study, Gd-diethylenetriaminepentaacetate(Gd-DTPA) was incorporated into layered double hydroxide (LDH) to meet the physicochemical properties required for MR-CT dual contrasting nanomedicine. Strategically, the particle size and nanometer incorporation of Gd-DTPA into LDH (GL-R hybrid) were controlled homogeneously using the reverse micelle method. X-ray diffraction showed that the hybrid obtained possessed a hydrotalcite phase. Dynamic light scattering and electron microscopic analyses showed that the hybrid had a controlled size of <200 nm with significant homogeneity. Fast Fourier-transform of transmission electron microscopy confirmed that the platelets of the GL-R hybrids were oriented randomly to form inter-particle space, enabling the Gd-DTPA moiety to be encapsulated stably. The encapsulation efficiency of Gd-DTPA was 20.8%, which was sufficiently high compared with other Gd-DTPA-incorporatedLDH. According to X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, Gd-DTPA incorporated in the hybrid preserved its structure intact. Its potential as a dual modal contrast agent was demonstrated by measuring the concentration-dependent Hounsfield unit and magnetic resonance relaxivity, which were determined to be 230 at 2 mg/mL and 5.8 in the range ~0.2–1 mM-Gd, respectively.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The paper is based on a presentation made during the 4th Asian Clay Conference, Thailand, June 2020.

References

Aime, S., & Caravan, P. (2009). Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. Journal of Magnetic Resonance Imaging, 30, 12591267.CrossRefGoogle ScholarPubMed
Alauddin, M. M. (2012). Positron emission tomography (PET) imaging with 18F-based radiotracers. American Journal of Nuclear Medicine and Molecular Imaging, 2, 5576.Google Scholar
Bloem, J. L., & Wondergem, J. (1989). Gd-DTPA as a contrast agent in CT. Radiology, 171, 578579.CrossRefGoogle ScholarPubMed
Caravan, P., Ellison, J. J., McMurry, T. J., & Lauffer, R. B. (1999). Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chemical Review, 99, 22932352.CrossRefGoogle ScholarPubMed
Choi, S. J., Oh, J. M., & Choy, J. H. (2010). Biocompatible nanoparticles intercalated with anticancer drug for target delivery: Pharmacokinetic and biodistribution study. Journal of Nanoscience and Nanotechnology, 10, 29132916.CrossRefGoogle ScholarPubMed
Choy, J.-H. (2004). Intercalative route to heterostructured nanohybrid. Journal of Physics and Chemistry of Solids, 65, 373383.CrossRefGoogle Scholar
Choy, J.-H., Jung, J.-S., Oh, J.-M., Park, M., Jeong, J., Kang, Y.-K., & Han, O.-J. (2004). Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials, 25, 30593064.CrossRefGoogle ScholarPubMed
Choy, J.-H., Kim, Y.-K., Son, Y.-H., Choy, Y. B., Oh, J.-M., Jung, H., & Hwang, S.-J. (2008). Nanohybrids of edible dyes intercalated in znal layered double hydroxides. Journal of Physics and Chemistry of Solids, 69, 15471551.CrossRefGoogle Scholar
Choy, J.-H., Kwak, S.-Y., Jeong, Y.-J., & Park, J.-S. (2000). Inorganic layered double hydroxides as nonviral vectors. Angewandte Chemie International Edition, 39, 40414045.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Choy, J.-H., Kwon, Y.-M., Han, K.-S., Song, S.-W., & Chang, S. H. (1998). Intra- and inter-layer structures of layered hydroxy double salts, Ni1–xZn2x(OH)2(CH3CO2)2x · nH2O. Materials Letters, 34, 356363.CrossRefGoogle Scholar
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10, 57.CrossRefGoogle ScholarPubMed
Deacon, G. B., & Phillips, R. J. (1980). Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordination Chemistry Reviews, 33, 227250.CrossRefGoogle Scholar
Gao, L., Zhou, J., Yu, J., Li, Q., Liu, X., Sun, L., et al. (2017). A novel Gd-DTPA-conjugated poly(l-γ-glutamyl-glutamine)-paclitaxel polymeric delivery system for tumor theranostics. Scientific Reports, 7, 3799.CrossRefGoogle ScholarPubMed
Gursky, J. A., Blough, S. D., Luna, C., Gomez, C., Luevano, A. N., & Gardner, E. A. (2006). Particle-particle interactions between layered double hydroxide nanoparticles. Journal of the American Chemical Society, 128, 83768377.CrossRefGoogle ScholarPubMed
Hoshyar, N., Gray, S., Han, H., & Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond), 11, 673692.CrossRefGoogle ScholarPubMed
Hu, G., Wang, N., O'Hare, D., & Davis, J. (2007). Synthesis of magnesium aluminium layered double hydroxides in reverse microemulsions. Journal of Materials Chemistry, 17, 22572266.CrossRefGoogle Scholar
Ionescu, E., Li, W., Wiehl, L., Mera, G., & Riedel, R. (2017). Synthesis of nanocrystalline Gd2O2NCN from a versatile single-source precursor. Zeitschrift für anorganische und allgemeine Chemie, 643, 16811691.CrossRefGoogle Scholar
Kim, H. J., Ryu, K., Kang, J. H., Choi, A. J., Kim, T. I., & Oh, J. M. (2013). Anticancer activity of ferulic acid-inorganic nanohybrids synthesized via two different hybridization routes, reconstruction and exfoliation-reassembly. Scientific World Journal, 2013, 421967.CrossRefGoogle ScholarPubMed
Kim, S. Y., Oh, J. M., Lee, J. S., Kim, T. J., & Choy, J. H. (2008). Gadolinium (III) diethylenetriamine pentaacetic acid/layered double hydroxide nanohybrid as novel T1-magnetic resonant nanoparticles. Journal of Nanoscience and Nanotechnology, 8, 51815184.CrossRefGoogle ScholarPubMed
Kim, T.-H., Kim, H., & Oh, J.-M. (2012). Interlayer structure of bioactive molecule, 2-aminoethanesulfonate, intercalated into calcium-containing layered double hydroxides. Journal of Nanoscience and Nanotechnology, 2012, article 21. https://doi.org/10.1155/2012/987938CrossRefGoogle Scholar
Kim, T.-H., Lee, G. J., Kang, J.-H., Kim, H.-J., Kim, T.-I., & Oh, J.-M. (2014). Anticancer drug-incorporated layered double hydroxide nanohybrids and their enhanced anticancer therapeutic efficacy in combination cancer treatment. BioMed Research International, 2014, 193401.Google ScholarPubMed
Kim, T.-H., Lee, J. Y., Kim, M.-K., Park, J. H., & Oh, J.-M. (2016). Radioisotope Co-57 incorporated layered double hydroxide nanoparticles as a cancer imaging agent. RSC Advances, 6, 4841548419.CrossRefGoogle Scholar
Kriven, W. M., Kwak, S.-Y., Wallig, M. A., & Choy, J.-H. (2004). Bio-resorbable nanoceramics for gene and drug delivery. MRS Bulletin, 29, 3337.CrossRefGoogle Scholar
Li, L., Jiang, W., Luo, K., Song, H., Lan, F., Wu, Y., & Gu, Z. (2013a). Superparamagnetic iron oxide nanoparticles as mri contrast agents for non-invasive stem cell labeling and tracking. Theranostics, 3, 595615.CrossRefGoogle ScholarPubMed
Li, Z., Wang, S. X., Sun, Q., Zhao, H. L., Lei, H., Lan, M. B., Cheng, Z. X., Wang, X. L., Dou, S. X., & Lu, G. Q. (2013b). Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic resonance imaging. Advanced Healthcare Materials, 2, 958964.CrossRefGoogle ScholarPubMed
Li, B., Gu, Z., Kurniawan, N., Chen, W., & Xu, Z. P. (2017). Manganese-based layered double hydroxide nanoparticles as a T(1) -mri contrast agent with ultrasensitive pH response and high relaxivity. Advanced Materials, 29, 1700373.CrossRefGoogle Scholar
Li, X., Liu, Y., Fu, F., Cheng, M., Liu, Y., Yu, L., Wang, W., Wan, Y., & Yuan, Z. (2019). Single nir laser-activated multifunctional nanoparticles for cascaded photothermal and oxygen-independent photodynamic therapy. Nano-Micro Letters, 11, 68.CrossRefGoogle ScholarPubMed
Lusic, H., & Grinstaff, M. W. (2013). X-ray-computed tomography contrast agents. Chemical Reviews, 113, 16411666.CrossRefGoogle ScholarPubMed
Ma, S., & Liu, Y. (2020). Diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in sublingual and submandibular salivary gland tumors. Molecular and Clinical Oncology, 13, 27.Google ScholarPubMed
Meng, D., Cui, X., Bai, C., Yu, Z., Xin, L., Fu, Y., Wang, S., Du, Y., Gao, Z., & Ye, Z. (2019). Application of low-concentration contrast agents and low-tube-voltage computed tomography to chest enhancement examinations: A multicenter prospective study. Science Progress, 103, 0036850419892193.Google ScholarPubMed
Musumeci, A., Schiller, T., Xu, Z., Minchin, R., Martin, D., & Smith, S. (2010). Synthesis and characterization of dual radiolabeled layered double hydroxide nanoparticles for use in in vitro and in vivo nanotoxicology studies. The Journal of Physical Chemistry C, 114(2), 734740.CrossRefGoogle Scholar
Na, H., Jung, L., An, K., Park, Y. I., Park, M., Lee, I., Nam, D.-H., Kim, S. T., Kim, S.-H., Kim, S.-W., Lim, K.-H., Kim, K., Kim, S.-O., & Hyeon, T. (2007). Development of at1 contrast agent for magnetic resonance imaging using mno nanoparticles. Angewandte Chemie (International ed. in English), 46, 53975401.CrossRefGoogle Scholar
Oh, J.-M., Kwak, S.-Y., & Choy, J.-H. (2006a). Intracrystalline structure of DNA molecules stabilized in the layered double hydroxide. Journal of Physics and Chemistry of Solids, 67, 10281031.CrossRefGoogle Scholar
Oh, J.-M., Park, M., Kim, S.-T., Jung, J.-Y., Kang, Y.-G., & Choy, J.-H. (2006b). Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system. Journal of Physics and Chemistry of Solids, 67, 10241027.CrossRefGoogle Scholar
Oh, J. M., Choi, S. J., Lee, G. E., Kim, J. E., & Choy, J. H. (2009). Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chemistry: An Asian Journal, 4, 6773.Google ScholarPubMed
Pan, Y., Yang, J., Fang, Y., Zheng, J., Song, R., & Yi, C. (2017). One-pot synthesis of gadolinium-doped carbon quantum dots for high-performance multimodal bioimaging. Journal of Materials Chemistry B, 5, 92101.CrossRefGoogle ScholarPubMed
Pedrosa, P., & Baptista, P. V. (2015). Chapter 1 - gold and silver nanoparticles for diagnostics of infection. In Rai, M. & Kon, K. (Eds.), Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases (pp. 118). Academic Press.Google Scholar
Peters, A., Veronesi, B., Calderón-Garcidueñas, L., Gehr, P., Chen, L. C., Geiser, M., Reed, W., Rothen-Rutishauser, B., Schürch, S., & Schulz, H. (2006). Translocation and potential neurological effects of fine and ultrafine particles a critical update. Particle and Fibre Toxicology, 3, 13.CrossRefGoogle ScholarPubMed
Ribeiro, L. N. M., Breitkreitz, M. C., Guilherme, V. A., da Silva, G. H. R., Couto, V. M., Castro, S. R., de Paula, B. O., Machado, D., & de Paula, E. (2017). Natural lipids-based nlc containing lidocaine: From pre-formulation to in vivo studies. European Journal of Pharmaceutical Sciences, 106, 102112.CrossRefGoogle ScholarPubMed
Seltzer, S. E., Shulkin, P. M., Adams, D. F., Davis, M. A., Hoey, G. B., Hopkins, R. M., & Bosworth, M. E. (1984). Usefulness of liposomes carrying losefamate for CT opacification of liver and spleen. American Journal of Roentgenology, 143, 575579.CrossRefGoogle ScholarPubMed
Sun Zhou, X.D., Marzke, R., Peng, Z., Szilágyi, I., & Dey, S.K. (2019). Understanding the high longitudinal relaxivity of Gd(DPTA)-intercalated (Zn,Al)-layered double hydroxide nanoparticles. Inorganic Chemistry, 58, 1211212121.CrossRefGoogle Scholar
Ullah, N., Imran, M., Liang, K., Yuan, C.-Z., Zeb, A., Jiang, N., Qazi, U., Sahar, S., & Xu, A.-W. (2017). Highly dispersed ultra-small pd nanoparticles on gadolinium hydroxide nanorods for efficient hydrogenation reactions. Nanoscale, 9, 1380013807.CrossRefGoogle ScholarPubMed
Vithanarachchi, S. M., & Allen, M. J. (2012). Strategies for targetspecific contrast agents for magnetic resonance imaging. Current molecular imaging, 1, 1225.CrossRefGoogle ScholarPubMed
Wattjes, M. P., Steenwijk, M. D., & Stangel, M. (2015). Mri in the diagnosis and monitoring of multiple sclerosis: An update. Clinical Neuroradiology, 25, 157165.CrossRefGoogle ScholarPubMed
Xie, W., Guo, Z., Cao, Z., Gao, Q., Wang, D., Boyer, C., Kavallaris, M., Sun, X., Wang, X., Zhao, L., & Gu, Z. (2019). Manganese-based magnetic layered double hydroxide nanoparticle: A pH-sensitive and concurrently enhanced T1/T2-weighteddual-mode magnetic resonance imaging contrast agent. ACS Biomaterials Science & Engineering, 5, 25552562.CrossRefGoogle ScholarPubMed
Xu, C., Akakuru, O. U., Zheng, J., & Wu, A. (2019). Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections. Frontiers in Bioengineering and Biotechnology, 7, 141141.CrossRefGoogle ScholarPubMed
Xu, Z. P., Kurniawan, N. D., Bartlett, P. F., & Lu, G. Q. (2007). Enhancement of relaxivity rates of Gd-dtpa complexes by intercalation into layered double hydroxide nanoparticles. Chemistry – A European Journal, 13, 28242830.CrossRefGoogle ScholarPubMed
Yang, J.-H., Han, Y.-S., Park, M., Park, T., Hwang, S.-J., & Choy, J.-H. (2007). New inorganic-based drug delivery system of indole-3-aceticacid-layered metal hydroxide nanohybrids with controlled release rate. Chemistry of Materials, 19, 26792685.CrossRefGoogle Scholar
Zatsepin, D. A., Boukhvalov, D. W., Zatsepin, A. F., Kuznetsova, Y. A., Mashkovtsev, M. A., Rychkov, V. N., Shur, V. Y., Esin, A. A., & Kurmaev, E. Z. (2018). Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory. Applied Surface Science, 436, 697707.CrossRefGoogle Scholar
Zhang, J., Ju, X., Wu, Z. Y., Liu, T., Hu, T. D., Xie, Y. N., & Zhang, Z. L. (2001). Structural characteristics of cerium oxide nanocrystals prepared by the microemulsion method. Chemistry of Materials, 13, 41924197.CrossRefGoogle Scholar
Zhang, Y., Li, B., Wu, B., Yu, H., Song, J., Xiu, Y., & Shi, H. (2020). Diagnostic performance of whole-body bone scintigraphy in combination with spect/ct for detection of bone metastases. Annals of Nuclear Medicine, 34, 549558.CrossRefGoogle ScholarPubMed
Supplementary material: File

Jung et al. supplementary material
Download undefined(File)
File 63.8 KB