Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T12:34:33.978Z Has data issue: false hasContentIssue false

Kerolite in Carbonate-Rich Speleothems and Microbial Deposits From Basaltic Caves, Kauai, Hawaii

Published online by Cambridge University Press:  01 January 2024

Richard J. Léveillé*
Affiliation:
Department of Earth Sciences, The University of Western Ontario, London, Ontario, Canada N6A 5B7
Fred J. Longstaffe
Affiliation:
Department of Earth Sciences, The University of Western Ontario, London, Ontario, Canada N6A 5B7
William S. Fyfe
Affiliation:
Department of Earth Sciences, The University of Western Ontario, London, Ontario, Canada N6A 5B7
*
*E-mail address of corresponding author: c1730@er.uqam.ca

Abstract

The occurrence of kerolite in association with various secondary Ca-Mg carbonate mineral deposits (speleothems) was identified in basaltic sea caves on the island of Kauai, Hawaii. Kerolite is the dominant clay mineral in the deposits. X-ray diffraction (XRD) peaks of the kerolite are characteristically broadened indicating its extremely poor crystallinity. Few changes were observed in the XRD patterns of this kerolite when it was subjected to various humidity, temperature and ethylene-glycol treatments. The crystals appear as flaky masses with irregular or jagged edges in scanning (SEM) and transmission electron microscopy (TEM). Electron probe and energy dispersive X-ray (EDX) microanalysis show that the clay material is dominated by Mg-Si-O, with minor amounts of Al and Ca in some samples. The chemical composition, thermal analysis and TEM observations suggest that smaller amounts of an amorphous serpentine-like phase are mixed with the kerolite. Kerolite is often the only mineral associated with poorly mineralized, actively-growing microbial mats in these caves and it is common in completely lithified microbial mats. The latter commonly have microstromatolitic structures with kerolite as a dominant phase. These features suggest that kerolite formation is at least in part a result of microbial activity. The abundant extracellular polymers of the mat-forming bacteria bind and concentrate ions (Mg2+, silica) from solution and serve as nucleation sites for kerolite precipitation. Conditions within the mats also probably lead to formation of Mg-Si-gels, amorphous Mg-silicate precursors and ultimately kerolite. Evaporation of the cave solutions may also contribute to kerolite formation.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, W.W. and Banfield, J.F., (1998) Zones of chemical and physical interaction at interfaces between microbial communities and minerals: A model Geomicrobiology Journal 15 223244 10.1080/01490459809378078.CrossRefGoogle Scholar
Bish, D.L. and Brindley, G.W., (1978) Deweylites, mixtures of poorly crystalline hydrous serpentine and talc-like minerals Mineralogical Magazine 42 7579 10.1180/minmag.1978.042.321.09.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., (1980) Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 495 pp.CrossRefGoogle Scholar
Brindley, G.W. Bish, D.L. and Wan, H.M., (1977) The nature of kerolite, its relation to talc and stevensite Mineralogical Magazine 41 443452 10.1180/minmag.1977.041.320.04.CrossRefGoogle Scholar
Caillère, S. Henin, S. and Esteoule, J., (1963) Nouvelles études sur la synthèse des minéraux argileux à partir de gels Clay Minerals Bulletin 5 272278 10.1180/claymin.1963.005.30.03.CrossRefGoogle Scholar
Decarreau, A. Mondesir, H. and Besson, G., (1989) Synthèse et stabilité des stévensites, kérolites et talcs, magnésiens et nickelifères, entre 80 et 240°C Comptes Rendus de l’Académie des Sciences Paris 308 II 301 306.Google Scholar
Elton, N.J. Hooper, J.J. and Holyer, V.A.D., (1997) An occurrence of stevensite and kerolite in the Devonian Crousa gabbro at Dean Quarry, The Lizard, Cornwall, England Clay Minerals 32 241252 10.1180/claymin.1997.032.2.06.CrossRefGoogle Scholar
Finlayson, B.L. and Webb, J.A., (1988) Evolution of ground water in Californian granites: Evidence from speleothems GSA Bulletin 100 639645 10.1130/0016-7606(1988)100<0639:EOGWIC>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Gíslason, S.R. Veblen, D.R. and Livi, K.J.T., (1993) Experimental meteoric wa ter- bas alt interactions: Characterization and interpretation of alteration products Geochimica et Cosmochimica Acta 57 14591471 10.1016/0016-7037(93)90006-I.CrossRefGoogle Scholar
Hay, R.L. Pexton, R.E. Teague, T.T. and Kyser, T.K., (1986) Spring-related carbonate rocks, Mg clays and associated minerals in Pliocene deposits of the Amargosa Desert, Nevada and California GSA Bulletin 97 14881503 10.1130/0016-7606(1986)97<1488:SCRMCA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Hay, R.L. Hughes, R.E. Kyser, T.K. Glass, H.D. and Liu, J., (1995) Magnesium-rich clays of the Meerschaum mines in the Amboseli Basin, Tanzania and Kenya Clays and Clay Minerals 43 455466 10.1346/CCMN.1995.0430409.CrossRefGoogle Scholar
Hill, C. and Forti, P., (1997) Cave Minerals of the World Huntsville, Alabama National Speleological Society 238 pp.Google Scholar
Jones, B.F., (1986) Clay mineral diagenesis in lacustrine sediments Washington D.C. US Geological Survey Bulletin, #1578 292 300.Google Scholar
Kashima, N., (1993) Speleominerals of Japanese Islands Proceedings of the International Congress on Speleology 11 75 76.Google Scholar
Konhauser, K.O. and Urrutia, M.M., (1999) Bacterial clay authigenesis: a common geochemical process Chemical Geology 161 399413 10.1016/S0009-2541(99)00118-7.CrossRefGoogle Scholar
Langmuir, D., (1997) Aqueous Environmental Geochemistry Upper Saddle River, N.J. Prentice Hall 600 pp.Google Scholar
Leveille, R.J., (2000) Biogeochemistry of carbonate-silicate deposits associated with microbial mats in basaltic caves, Kauai, Hawaii London, Canada The University of Western Ontario 178 pp.Google Scholar
Leveille, R.J. Fyfe, W.S. and Longstaffe, F.J., (2000) Unusual secondary Ca-Mg-carbonate-kerolite deposits in basaltic caves, Kauai, Hawaii Journal of Geology 108 613621 10.1086/314417.CrossRefGoogle Scholar
Leveille, R.J. Fyfe, W.S. and Longstaffe, F.J., (2000) Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves Chemical Geology 169 341357 10.1016/S0009-2541(00)00213-8.CrossRefGoogle Scholar
Mackenzie, R.C., (1970) Differential Thermal Analysis London Academic Press 775 pp.Google Scholar
Maksimović, Z., (1966) β-kerolite-pimelite series from Goleš mountain, Yugoslavia Proceedings of the International Clay Conference, Jerusalem 1 97 105.Google Scholar
de Martin Vidales, J.L. Pozo, M. Alia, J.M. Garcia-Navarro, F. and Rull, F., (1991) Kerolite-stevensite mixed-layers from the Madrid Basin, Central Spain Clay Minerals 26 329342 10.1180/claymin.1991.026.3.03.CrossRefGoogle Scholar
Morandi, N. and Poppi, L., (1974) Studio mineralogico della ‘Deweylite’ e della ‘Gymnite’ di Mezzavalle (Predazzo) Mineralogica et Petrographica Acta 20 49 61.Google Scholar
Ostrom, M.E., (1961) Separation of clay minerals from carbonate rocks by using acid Journal of Sedimentary Petrology 31 123 129.Google Scholar
Patterson, S.H., (1971) Investigations of ferruginous bauxite and other mineral resources on Kauai and a reconnaissance of ferruginous bauxite deposits on Maui, Hawaii Washington, D.C. US Geological Survey Professional Paper #656. 10.3133/pp656.CrossRefGoogle Scholar
Polyak, V.J. and Guven, N., (2000) Authigenesis of trioctahedral smectite in magnesium-rich carbonate speleothems in Carlsbad Cavern and other caves of the Guadalupe Mountains, New Mexico Clays and Clay Minerals 48 317321 10.1346/CCMN.2000.0480302.CrossRefGoogle Scholar
Pozo, M. and Casas, J., (1999) Origin of kerolite and associated Mg clays in palustrine-lacustrine environments. The Esquivias deposit (Neogen Madrid Basin, Spain) Clay Minerals 34 395418 10.1180/000985599546316.CrossRefGoogle Scholar
Renaut, R.W. and Jones, B., (1997) Controls on aragonite and calcite precipitation in hot spring travertines at Chemurkeu, Lake Bogoria, Kenya Canadian Journal of Earth Sciences 34 801818 10.1139/e17-066.CrossRefGoogle Scholar
Sakamoto, T., Koshimizu, H., Shinoda, S. and Otsuka, R. (1981) Hydrothermal transformations of some minerals into stevensite. Proceedings of the 7th International Clay Conference, Bologna and Pavia, 537546.Google Scholar
Sánchez-Navas, A. Martín-Algarra, A. and Nieto, F., (1998) Bacterially-mediated authigenesis of clays in phosphate stromatolites Sedimentology 45 519533 10.1046/j.1365-3091.1998.00157.x.CrossRefGoogle Scholar
Santiago Buey, C. Suárez Barrios, M. García Romero, E. and Doval Montoya, M., (2000) Mg-rich smectite ‘precursor’ phase in the Tagus Basin, Spain Clays and Clay Minerals 48 366373 10.1346/CCMN.2000.0480307.CrossRefGoogle Scholar
Sarkar, P.K. Friedman, G.M. and Karmalkar, N.R., (1998) Speleothem deposits developed in caves and tunnels of Deccan-Trap basalts, Maharashtra, India Carbonates and Evaporites 13 132135 10.1007/BF03176586.CrossRefGoogle Scholar
Siffert, B. and Wey, R., (1962) Synthese d’une sépiolite à température ordinaire Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 254 1460 1462.Google Scholar
Speakman, K. and Majumdar, A.J., (1971) Synthetic ‘dewey-lite’ Mineralogical Magazine 38 225234 10.1180/minmag.1971.038.294.12.CrossRefGoogle Scholar
Stoessell, R.K., (1988) 25°C and 1 atm dissolution experiments of sepiolite and kerolite Geochimica et Cosmochimica Acta 52 365374 10.1016/0016-7037(88)90092-0.CrossRefGoogle Scholar
Stoessell, R.K. and Hay, R.L., (1978) The geochemical origin of sepiolite and kerolite at Amboseli, Kenya Contributions to Mineralogy and Petrology 65 255267 10.1007/BF00375511.CrossRefGoogle Scholar
Tazaki, K., (1997) Biomineralization of layer silicates and hydrated Fe/Mn oxides in microbial mats: An electron microscopical study Clays and Clay Minerals 45 203212 10.1346/CCMN.1997.0450208.CrossRefGoogle Scholar
Urrutia, M.M. and Beveridge, T.J., (1994) Formation of finegrained metal and silicate precipitates on a bacterial surface (Bacillus subtilis) Chemical Geology 116 261280 10.1016/0009-2541(94)90018-3.CrossRefGoogle Scholar
Waters, A.C. Donnelly-Nolan, J.M. and Rogers, B.W., (1990) Selected caves and lava-tube systems in and near Lava Beds National Monument, California Washington D.C. US Geological Survey Bulletin #1673..Google Scholar
White, W.B., Ford, T.D. and Cullingford, C.H.D., (1976) Cave minerals and speleothems The Science of Speleology London Academic Press 267 327.Google Scholar