Hostname: page-component-76dd75c94c-8c549 Total loading time: 0 Render date: 2024-04-30T08:54:16.643Z Has data issue: false hasContentIssue false

Iron Influence in the Aluminosilicate Zeolites Synthesis

Published online by Cambridge University Press:  28 February 2024

E. I. Basaldella
Affiliation:
Centro de Investigaciones y Desarrollo en Procesos Catalíticos (CINDECA), La Plata, Argentina
R. M. Torres Sánchez
Affiliation:
Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC) CC49, 1897 M.B. Gonnet, Argentina
J. C. Tara
Affiliation:
Centro de Investigaciones y Desarrollo en Procesos Catalíticos (CINDECA), La Plata, Argentina

Abstract

The level of Fe impurities in 2 well-crystallized kaolinites was modified (by addition or chemical removal treatment) to analyze the Fe influence in the aluminosilicate zeolite synthesis.

The original and modified clays were heat-treated in order to change their reactivity for zeolite A synthesis, and their thermal transformations were studied by X-ray diffraction (XRD), determination of point of zero charge (PZC) and infrared (IR) techniques. It was established that many structural changes took place, regardless of the Fe clay content. Furthermore, the presence of Fe species in alkaline solution or in the solid phase did not seem to greatly influence the zeolite crystallization, because only small differences in the conversion values among samples with different Fe contents were registered. The crystallization process seemed to be related mainly to AI coordination changes produced by the thermal and Fe removal treatments used.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, J. Dwyer, J. Garfdorth, A.A. and Smith, W., 1986 The synthesis and characterization of iron silicate molecular sieves 137139.CrossRefGoogle Scholar
Basaldella, E. Bonetto, R.D. and Tara, J.C., 1993 Synthesis of NaY zeolite on preformed kaolinite spheres. Evolution of zeolite content and textural properties with the reaction time Ind Eng Chem Res 32 751757 10.1021/ie00016a025.CrossRefGoogle Scholar
Basaldella, E. Kikot, A. and Tara, J.C., 1995 Effect of pellet pore size and synthesis conditions in the in situ synthesis of LSX zeolite Ind Eng Chem Res. 34 29902996 10.1021/ie00048a009.CrossRefGoogle Scholar
Basaldella, E. and Tara, J.C., 1995 Synthesis of LSX zeolite in the Na/K system. Influence of the Na/K ratio Zeolites 11 243248 10.1016/0144-2449(94)00006-E.CrossRefGoogle Scholar
Blok, I. and De Bruyn, P.I., 1970 The ionic double layer at the Zn/O solution interface I. The exp. PZC J Colloid Interface Sci 32 518525 10.1016/0021-9797(70)90141-4.CrossRefGoogle Scholar
Breck, D.W., 1974 Zeolite molecular sieves New York J. Wiley.Google Scholar
Breck, D.W., 1964 US Pat .Google Scholar
Bulens, M. and Delmon, B., 1977 The exothermic reaction of metakaolinite in the presence of mineralizers. Infl. of crystallinity Clays Clay Miner 25 271277 10.1346/CCMN.1977.0250404.CrossRefGoogle Scholar
Haden, W.L. and Dzierzanowski, E.J., 1972 US Pat 3 391 994 (1968), 3 503 900 (1972) and 3 657 154 .Google Scholar
Hamilton, E. Coker, E.W. Sacco, A. Dixon, A.G. and Thompson, R.W., 1993 The effects of the silica source on the crystallization of zeolite NaX Zeolites 13 645653 10.1016/0144-2449(93)90137-R.CrossRefGoogle Scholar
Hinckley, D., 1963 Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and S. Carolina Clays Clay Miner 13 229232.Google Scholar
Howell, P.A. and Acara, N.A., 1964 US Pat .Google Scholar
Imbert, F.E. Moreno, C. Montero, A. Fontal, B. and Lugano, J., 1994 Venezuelan natural aluminosilicates as feedstock in the synthesis of zeolite A Zeolites 14 374379 10.1016/0144-2449(94)90112-0.CrossRefGoogle Scholar
Kuo, J.F. and Yen, T.E., 1988 Some aspects in predicting the PZC of composite oxide system J Colloid Interface Sci 121 220225 10.1016/0021-9797(88)90426-2.CrossRefGoogle Scholar
Llenado, R.A.. 1983. The use of sodium A zeolite in detergents. Olson, D., Bisio, A., editors. Proc 6th Int Zeolite Conf. p 940956.Google Scholar
Madani, A. Aznar, A. Sanza, J. and Serratosa, J.M., 1990 Si and Al NMR study of zeolite formation from alkali-leached kaolinites. Influence of thermal activation J Phys Chem 94 760765 10.1021/j100365a046.CrossRefGoogle Scholar
Murat, M. Amorkrane, A. Bastide, J.P. and Montanaro, L., 1992 Synthesis of zeolites from thermally activated kaolinite. Some observations on nucléation and growth Clay Miner 27 119130 10.1180/claymin.1992.027.1.12.CrossRefGoogle Scholar
Percival, H.J., Duncan, J.F. and Foster, P.K.. Interpretation of the kaolinite-mullite reaction sequence from IR. J Am Ceram Soc 57:5761.CrossRefGoogle Scholar
Pyman, M.A. Bowden, J.W. and Posner, A.M., 1979 The PZC of amorphous coprecipitation of silica with hydrous Al or ferric hydroxide Clay Miner 14 8792 10.1180/claymin.1979.014.1.08.CrossRefGoogle Scholar
Smolik, T. Harman, V. and Fuerstenau, D., 1966 Surface characterization and flotation behaviour of aluminosilicates Trans Mining Eng AIME 235 367370.Google Scholar
Torres Sánchez, R.M., 1983 Etude de l’association entre la kaolinite et le fer externe [thesis] Belgium Univ Cathol. de Louvain-la-Neuve, L-l-N..Google Scholar
Torres Sanchez, R.M. Aglietti, E.F. and Porto Lopez, J.M., 1988 PZC modification on mechanochemical treated kaolinite Mater Cem and Physics 20 2738 10.1016/0254-0584(88)90056-9.CrossRefGoogle Scholar
Tschapek, M. Tcheichvili, L. and Wasowski, C., 1974 The PZC of kaolinite and SiO2 + Al2O3 mixtures Clays Clay Miner 10 219229 10.1180/claymin.1974.010.4.01.CrossRefGoogle Scholar