Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-09T04:49:54.342Z Has data issue: false hasContentIssue false

Intercalation of 8-Hydroxyquinoline into Al-Smectites by Solid-Solid Reactions

Published online by Cambridge University Press:  01 January 2024

Nithima Khaorapapong
Affiliation:
Department of Applied Chemistry, Waseda University, Okubo-3, Shinjuku-ku, Tokyo 169-8555, Japan
Kazuyuki Kuroda
Affiliation:
Department of Applied Chemistry, Waseda University, Okubo-3, Shinjuku-ku, Tokyo 169-8555, Japan Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Nishiwaseda-2, Shinjuku-ku, Tokyo 169-0051, Japan
Makoto Ogawa*
Affiliation:
Department of Earth Sciences, Waseda University, Nishiwaseda-1, Shinjuku-ku, Tokyo 169-8050, Japan PRESTO, Japan Science and Technology Corporation
*
*E-mail address of corresponding author: makoto@waseda.ac.jp

Abstract

Tris(8-hydroxyquinoline)aluminum (III) complexes (Alq3), one of the molecules studied most widely for organic light-emitting devices, were formed in the interlayer spaces of smectites by solid-solid reactions between Al-smectites (Al-montmorillonite and Al-synthetic saponite (Sumecton)) and 8-hydroxyquinoline (8Hq) at room temperature. The intercalation of 8-hydroxyquinoline molecules into Al-smectites was demonstrated by powder XRD, FTIR, DTA, TG, TG-MS, and chemical analysis. The coordination of the ligand to the interlayer Al cations was proved by FTIR, UV-Vis, and photoluminescence spectroscopies. The luminescence intensity of Alq3-Sumecton was much greater than that of Alq3-montmorillonite, and this was ascribed to the very small amount of quenching impurities in Sumecton.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brinkmann, M. Gadret, G. Muccini, M. Taliani, C. Masciocchi, N. and Sironi, A., (2000) Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mertris(8-hydroxyquinoline)aluminum(III) Journal of American Chemical Society 122 51475157 10.1021/ja993608k.CrossRefGoogle Scholar
Bujdák, J. and Slosiariková, H., (1992) The reaction of montmorillonite with octadecylamine in solid and melted state Applied Clay Science 7 263269 10.1016/0169-1317(92)90014-E.CrossRefGoogle Scholar
Clearfield, A. and Troup, J.M., (1970) Ion exchange between solids Journal of Physical Chemistry 74 25782580 10.1021/j100706a033.CrossRefGoogle Scholar
Curioni, A. Boero, M. and Andreoni, W., (1998) Alq3: ab initio calculations of its structural and electronic properties in neutral and charged states Chemical Physics Letters 294 263271 10.1016/S0009-2614(98)00829-X.CrossRefGoogle Scholar
Ferreiro, E.A. De Bussetti, S.G. and Helmy, A.K., (1988) Sorption of 8-hydroxyquinoline by some clays and oxides Clays and Clay Minerals 36 6167 10.1346/CCMN.1988.0360108.CrossRefGoogle Scholar
Halls, M.D. and Aroca, R., (1998) Vibrational spectra and structure of tris(8-hydroxyquinoline)aluminum(III) Canadian Journal of Chemistry 76 1730 1736.Google Scholar
Higginson, K.A. Zhang, X.-M. and Papadimitrakopoulos, F., (1998) Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3) Chemistry of Materials 10 10171020 10.1021/cm970599a.CrossRefGoogle Scholar
Khaorapapong, N. Kuroda, K. Hashizume, H. and Ogawa, M., (2000) Solid state intercalation of 4,4-bipyridine into the interlayer space of montmorillonites Molecular Crystals and Liquid Crystals 341 351356 10.1080/10587250008026165.CrossRefGoogle Scholar
Khaorapapong, N. Kuroda, K. Hashizume, H. and Ogawa, M., (2001) Solid-state intercalation of 4,4-bipyridine and 1,2-di(4-pyridine)ethylene into the interlayer spaces of Co(II)-, Ni(II)-, and Cu(II)-montmorillonites Applied Clay Science 19 6976 10.1016/S0169-1317(01)00055-2.CrossRefGoogle Scholar
Kido, J. and Iizumi, Y., (1998) Fabrication of highly efficient organic electroluminescent devices Applied Physics Letters 73 27212723 10.1063/1.122570.CrossRefGoogle Scholar
Kido, J. Kimura, M. and Nagai, K., (1995) Multilayer white light-emitting organic electroluminescent device Science 267 13321334 10.1126/science.267.5202.1332.CrossRefGoogle ScholarPubMed
Labhasetwar, N.K. and Shrivastava, O.P., (1995) Intercalation compounds of Cu2+ and Ni2+-exchanged montmorillonite clay with 8-hydroxyquinoline Journal of the Chinese Chemical Society 42 6770 10.1002/jccs.199500011.CrossRefGoogle Scholar
Lázár, K. Pál-Borbély, G. Beyer, H.K. and Karge, H.G., (1994) Solid-state ion exchange in zeolites Journal of Chemical Society, Faraday Transactions 90 13291334 10.1039/FT9949001329.CrossRefGoogle Scholar
Marchon, B. Bokobza, L. and Cote, G., (1986) Vibrational study of 8-quinolinol and 7-(4-ethyl-1 -methyloctyl)-8-quinolinol (Kelex 100), two representative members of an important chelating agent family Spectrochimica Acta 42A 537542 10.1016/0584-8539(86)80051-4.CrossRefGoogle Scholar
Ogawa, M. and Kuroda, K., (1995) Photofunctions of intercalation compounds Chemical Reviews 95 399438 10.1021/cr00034a005.CrossRefGoogle Scholar
Ogawa, M. and Kuroda, K., (1997) Preparation of inorganic-organic nanocomposites through intercalation of organoammonium ions into layered silicates Bulletin of the Chemical Society of Japan 70 25932618 10.1246/bcsj.70.2593.CrossRefGoogle Scholar
Ogawa, Makoto Kuroda, Kazuyuki and Kato, Chuzo, (1989) Preparation of Montmorillonite-Organic Intercalation Compounds by Solid-Solid Reactions Chemistry Letters 18 9 16591662 10.1246/cl.1989.1659.CrossRefGoogle Scholar
Ogawa, Makoto Handa, Tokuhiko Kuroda, Kazuyuki and Kato, Chuzo, (1990) Formation of Organoammonium-Montmorillonites by Solid-Solid Reactions Chemistry Letters 19 1 7174 10.1246/cl.1990.71.CrossRefGoogle Scholar
Ogawa, M. Hashizume, T. Kuroda, K. and Kato, C., (1991) Intercalation of 2,2′-bipyridine and complex formation in the interlayer space of montmorillonite by solid-solid reactions Inorganic Chemistry 30 584585 10.1021/ic00003a050.CrossRefGoogle Scholar
Ogawa, M. Takahashi, M. Kato, C. and Kuroda, K., (1994) Oriented microporous film of tetramethylammonium pillared saponite Journal of Materials Chemistry 4 519523 10.1039/jm9940400519.CrossRefGoogle Scholar
Ogawa, M. Kadomoto, H. Kato, C. and Kuroda, K., (1997) Intercalation of a crown-ether into layered silicates Clay Science 10 185 194.Google Scholar
Ozin, G.A., (1989) Advanced zeolite materials science Angewandte Chemie International Edition in English 28 359376 10.1002/anie.198903591.CrossRefGoogle Scholar
Papadimitrakopoulos, F. Zhang, X.-M. Thomsen, D.L. III and Higginson, K.A., (1996) A chemical failure mechanism for aluminum(III) 8-hydroxyquinoline light-emitting devices Chemistry of Materials 8 13631365 10.1021/cm960152m.CrossRefGoogle Scholar
Patil, O. Curtin, D.Y. and Paul, I.C., (1984) Solid-state formation of quinhydrones from their components. Use of solid-solid reactions to prepare compounds not accessible from solution Journal of American Chemical Society 106 348353 10.1021/ja00314a017.CrossRefGoogle Scholar
Rastogi, R.P. Singh, N.B. and Singh, R.P., (1977) Organic solid-state reactions Journal of Solid State Chemistry 20 191200 10.1016/0022-4596(77)90067-6.CrossRefGoogle Scholar
Sheats, J.R. Antoniadis, H. Hueschen, M. Leonard, W. Miller, J. Moon, R. Roitman, D. and Stocking, A., (1996) Organic electroluminescent devices Science 273 884888 10.1126/science.273.5277.884.CrossRefGoogle ScholarPubMed
Sugahara, Y. Kuroda, K. and Kato, C., (1984) Synthesis β-sialon from a montmorillonite-polyacrylonitrile intercalation compound by carbothermal reduction Journal of the American Ceramic Society 67 C247 C248 10.1111/j.1151-2916.1984.tb19499.x.CrossRefGoogle Scholar
Tang, C.W. and Van Slyke, S.A., (1987) Organic electroluminescent diodes Journal of Applied Physics 51 913 915.Google Scholar
Tang, C.W. Van Slyke, S.A. and Chen, C.H., (1989) Electroluminescence of doped organic thin films Journal of Applied Physics 65 36103616 10.1063/1.343409.CrossRefGoogle Scholar
Theng, B.K.G., (1974) The Chemistry of Clay-Organic Reactions London Adam Hilger.Google Scholar
Toda, Fumio Tanaka, Koichi and Sekikawa, Ayako, (1987) Host–guest complex formation by a solid–solid reaction J. Chem. Soc., Chem. Commun. 0 4 279280 10.1039/C39870000279.CrossRefGoogle Scholar
Van Olphen, H., (1977) An Introduction to Clay Colloid Chemistry 2nd New York Wiley-Interscience.Google Scholar
Van Slyke, S.A. Chen, C.H. and Tang, C.W., (1996) Organic electroluminescent devices with improved stability Applied Physics Letters 69 21602162 10.1063/1.117151.CrossRefGoogle Scholar
Whittingham, M.S., Whittingham, M.S. and Jacobson, A.J., (1982) Intercalation chemistry: an introduction Intercalation Chemistry New York Academic Press 1 18.Google Scholar
Yariv, S., (1990) Combined DTA-Mass spectrometry of organo-clay complexes Journal of Thermal Analysis 36 19531961 10.1007/BF01914111.CrossRefGoogle Scholar
Yariv, S., (1991) Differential thermal analysis (DTA) of organo-clay complexes in thermal analysis in the geosciences Lecture Notes in Earth Sciences 38 328351 10.1007/BFb0010274.CrossRefGoogle Scholar
Zhang, L.G. Ren, X.G. Jiang, D.P. Lu, A.D. and Yuan, J.S., (1996) Effect of metal cation on absorption and fluorescence spectra of metal complexes of 8-hydroxyquinoline Spectroscopy Letters 29 9951001 10.1080/00387019608007266.CrossRefGoogle Scholar