Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T07:28:23.760Z Has data issue: false hasContentIssue false

Interactions of Citric Acid and Synthetic Hydroxy-Aluminum Montmorillonite

Published online by Cambridge University Press:  02 April 2024

P. Cambier
Affiliation:
Station de Science du Sol, Institut National de la Recherche Agronomique, Route de Saint-Cyr, 78026 Versailles Cedex, France
Garrison Sposito
Affiliation:
Department of Soil Science, University of California, Berkeley, California 94720

Abstract

Hydroxy-Al-montmorillonite was prepared by mixing Na-Wyoming montmorillonite with Al(OH)2.5 polycations and aging the mixture for 10 days. The reactions of this complex with citric acid at millimolar concentrations were investigated at different pHs for a 4-hr reaction time. The citrate sorption data, X-ray powder diffraction patterns of the montmorillonite adsorbent, and solubility products for Al(OH)3, estimated after computer speciation of the aqueous solution phase, suggested two reaction mechanisms, depending on pH. At 4 < pH < 5.5, the complex was stable, and only external hydroxy-Al polycations could react with citrate, yielding a sorption envelope characteristic of an acid having a low pKa. At higher pH, and particularly at pH > 7, the interlayer Al-polymers became accessible to the ligand and desorbed quickly from the montmorillonite basal planes to form a new, external, X-ray-amorphous solid phase with citrate. This reaction produced a large second peak in the sorption envelopes near pH 8, which was controlled by the increasingly negative surface charge at high pH and by the initial concentration of citric acid. This ligand accelerated, i.e., favored kinetically, the dissociation of adsorbed hydroxy-Al polymers from montmorillonite at pH > 7.

Résumé

Résumé

On prépare une smectite hydroxyalumineuse en mélangeant et en laissant en suspension 10 jours une montmorillonite du Wyoming Na et des polycations Al(OH)2.5. Les réactions de ce complexe avec l'acide citrique en concentration millimolaire et à différent pH sont analysées à partir des quantités de citrate adsorbé, de la diffraction X appliquée à des dépôts orientés de l'argile ayant réagi, du calcul du produit de solubilité Al(OH)3 et des concentrations des diverses espèces en solution. Deux mécanismes sont invoqués selon les domaines de pH. A 4 < pH < 5.5, le complexe est stable et seuls les polymères d'Al des surfaces externes peuvent réagir avec le citrate, conduisant à une fixation de citrate faible, caractérisée par des courbes en fonction du pH avec un maximum apparent. A pH plus élevé et surtout à pH >7, tous les polymères d'Al deviennent accessibles au ligand. et sont rapidement détachés des surfaces basales pour former avec le citrate une nouvelle phase amorphe en dehors des feuillets de l'argile. Cette dernière réaction se traduit par un deuxième maximum plus important dans les courbes enveloppes, vers pH 8, dont l'amplitude est limitée par l'effet de l'augmentation des charges négatives à pH élevé, et par la quantité initiale de citrate. Cet anion accélère la dissociation des polymères d'Al et de la montmorillonite à pH > 7.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertsch, P. M. and Sposito, G., 1989 Aqueous polynuclear aluminum species The Environmental Chemistry of Aluminum Florida CRC Press, Boca Raton 87115.Google Scholar
Bowden, J. W., Nagarajah, S., Barrow, N. J., Posner, A. M. and Quirk, J. P., 1980 Describing the adsorption of phosphate, citrate and selenite on a variable-charge mineral surface Aust. J. Soil Res. 18 4960.CrossRefGoogle Scholar
Brindley, G. W. and Brown, G., 1981 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.Google Scholar
Brindley, G. W. and Kao, C. C., 1980 Formation, compositions and properties of hydroxy-Al and hydroxy-Mg-montmorillonite Clays & Clay Minerals 28 435443.CrossRefGoogle Scholar
Brown, G. and Newman, A. C., 1973 The reactions of soluble aluminium with montmorillonite J. Soil Sci. 24 339354.CrossRefGoogle Scholar
Brydon, J. E. and Kodama, H., 1966 The nature of aluminum hydroxide-montmorillonite complexes Amer. Mineral. 51 875889.Google Scholar
Coves, J. and Sposito, G., 1986 MICROQL-UCR: A Surface Chemical Adaptation of the Speciation Program MI-CROQL Riverside University of California.Google Scholar
Gillman, G. P., 1979 A proposed method for the measurement of exchange properties of highly weathered soils Aust. J. Soil Res. 17 129140.CrossRefGoogle Scholar
Goh, T. B. and Huang, P. M., 1984 Formation of hydroxy-Al montmorillonite complexes as influenced by citric acid Can. J. Soil Sci. 64 411421.CrossRefGoogle Scholar
Goh, T. B., Huang, P. M. and Rennie, D. A., 1986 Phy-totoxicity of organic acids as influenced by montmorillonite, hydroxy-Al montmorillonite and phosphate fertilization Commun. Soil Sci. Plant Anal. 17 515531.CrossRefGoogle Scholar
Gregor, J. E. and Powell, H. K. J., 1986 Aluminium(III)-citrate complexes: A Potentiometrie and 13C N.M.R. study Aust. J. Chem. 39 18511864.CrossRefGoogle Scholar
Harsh, J. B. and Doner, H.E., 1985 The nature and stability of aluminum hydroxide precipitated on Wyoming montmorillonite Geoderma 36 4556.CrossRefGoogle Scholar
Haynes, R. J., 1982 Effects of liming on phosphate availability in acid soils. A critical review Plant and Soil 68 289308.CrossRefGoogle Scholar
Hingston, F. J., Anderson, M. and Rubin, J., 1981 A review of anion adsorption Adsorption of Inorganics at Solid-Liquid Interfaces Ann Arbor, Michigan Ann Arbor Science 5190.Google Scholar
Hsu, P.-H., 1968 Heterogeneity of montmorillonite surface and its effect on the nature of hydroxy-aluminum interlay-ers Clays & Clay Minerals 16 303311.CrossRefGoogle Scholar
Huang, P. M., Violante, A., Huang, P. M. and Schnitzer, M., 1986 Influence of organic acids on crystallization and surface properties of precipitation products of aluminum Interactions of Soil Minerals with Natural Organics and Microbes Madison, Wisconsin Soil Science Society of America 159221.CrossRefGoogle Scholar
Jardine, P. M., Zelazny, L. W. and Ewans, A Jr., 1986 Solution aluminum anomalies resulting from various filtering materials Soil Sci. Soc. Amer. J. 50 891894.CrossRefGoogle Scholar
Keren, R. and Gast, R. G., 1983 pH-dependent boron adsorption by montmorillonite hydroxy-aluminum complexes Soil Sci. Soc. Amer. J. 47 11161121.CrossRefGoogle Scholar
Kittrick, J. A., 1983 Chlorites differentiated from inter-grade smectites and vermiculites by solution stability criteria Clays & Clay Minerals 31 317318.CrossRefGoogle Scholar
Kodama, H. and Webber, M. D., 1975 Clay inorganic studies. II. Hydroxyaluminium phosphate-montmorillonite complex Can. J. Soil Sci. 55 225233.CrossRefGoogle Scholar
Lahav, N., Shani, U. and Shabai, J., 1978 Cross-linked smectites. I. Synthesis and properties of hydroxy-alumi-num-montmorillonite Clays & Clay Minerals 26 107115.CrossRefGoogle Scholar
Martell, A. E. and Smith, R. M., 1977 Critical Stability Constants, Vol. 3. Other Organic Ligands New York Plenum Press.Google Scholar
Motekaitis, R. J. and Martell, A. E., 1984 Complexes of A1(III) with hydroxy carboxylic acids Inorg. Chem. 23 1823.CrossRefGoogle Scholar
Nordstrom, D. K., May, H. M. and Sposito, G., 1989 Aqueous equilibrium data for mononuclear aluminum species The Environmental Chemistry of Aluminum Florida CRC Press, Boca Raton 2953.Google Scholar
Öhman, L. and Sjöberg, S., 1983 Equilibrium and structural studies of silicon (IV) and aluminium (III) in aqueous solution. Part 9. A Potentiometrie study of mono- and poly-nuclear aluminium (III) citrates J. Chem. Soc. Dalton Trans. 25132517.CrossRefGoogle Scholar
Plee, D., Brog, F., Gatineau, L. and Fripiat, J. J., 1985 High resolution solid state 27A1 and 29Si nuclear magnetic resonance study of pillared clays J. Amer. Chem. Soc. 107 23622369.CrossRefGoogle Scholar
Rich, C. I., 1968 Hydroxy interlayers in expansible layer silicates Clays & Clay Minerals 16 1530.CrossRefGoogle Scholar
Sawhney, B. L., 1960 Aluminium interlayers in clay minerals, montmorillonite and vermiculite Nature 187 261262.CrossRefGoogle Scholar
Singh, S. S. and Brydon, J. E., 1970 Activity of aluminium hydroxy sulfates and the stability of hydroxyaluminium interlayers in montmorillonite Can. J. Soil Sci. 50 219225.CrossRefGoogle Scholar
Sposito, G., 1981 The Thermodynamics of Soil Solutions Oxford Clarendon Press.Google Scholar
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford Univ. Press.Google Scholar
Traina, S. J., Sposito, G., Bradford, G. R. and Kafkafi, U., 1987 Kinetic study of citrate effects on orthophosphate solubility in an acidic, montmorillonitic soil Soil Sci. Soc. Amer. J. 51 14831487.CrossRefGoogle Scholar
Turner, R. C. and Brydon, J. E., 1967 Effect of length of time of reactions on some properties of suspensions of Arizona bentonite, illite and kaolinite in which aluminium hydroxide is precipitated Soil Sci. 103 111117.CrossRefGoogle Scholar
Veith, J. A., 1977 Basicity of exchangeable aluminum, formation of gibbsite, and composition of the exchange acidity in the presence of exchangers Soil Sci. Soc. Amer. J. 41 865870.CrossRefGoogle Scholar
Veith, J. A., 1978 Selectivity and adsorption capacity of smectite and vermiculite for aluminum of varying basicity Clays & Clay Minerals 26 4550.CrossRefGoogle Scholar
Violante, A. and Huang, P. M., 1985 Influence of inorganic and organic ligands on the formation of aluminum hydroxides and oxyhydroxides Clays & Clay Minerals 33 181192.CrossRefGoogle Scholar
Weaver, C. E. and Pollard, L. D., 1973 The Chemistry of Clay Minerals .Google Scholar
Webber, M. D. and Clark, J. S., 1969 Reactions of phosphate with aluminium and Wyoming bentonite Can. J. Soil Sci. 49 231240.CrossRefGoogle Scholar
Zhang, Y., Kallay, N. and Matijevic, E., 1985 Interactions of metal hydrous oxides with chelating agents. 7. Hematite-oxalic acid and citric-acid systems Langmuir 1 201206.CrossRefGoogle Scholar