Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-27T18:30:58.998Z Has data issue: false hasContentIssue false

The Influence of Heat-Stable Intercalate on the Rate of Dehydroxylation of Smectite

Published online by Cambridge University Press:  01 July 2024

R. H. Loeppert Jr.
Affiliation:
Department of Crop and Soil Science, Michigan State University, East Lansing, Michigan 48824
M. M. Mortland
Affiliation:
Department of Crop and Soil Science, Michigan State University, East Lansing, Michigan 48824

Abstract

The rates of dehydroxylation of smectites intercalated with the decomposition products of Ni(phen)3SO4 are from 2 to 4 times greater than those of clays without the heat-stable intercalate. These results suggest that the intercalated material, in keeping the clay sheets separated, provides a more ready avenue for water loss during the dehydroxylation process.

Резюме

Резюме

Скорости дегидроксилирования смектитов, насыщенных продуктами разложения Ni(фен)3SO4 от 2 до 4 раз выше, чем для глин без теплостойких прослоев. Эти результаты показы¬вают, что эти включения, разделяя слои глины, обеспечивают лучшие условия для потери воды в течение процесса дегидроксилирования.

Resümee

Resümee

Die Geschwindigkeiten der Dehydroxylierung von Smektiten mit eingelegten Zerfallsprodukten von Ni(phen)3SO4, sind 2 bis 4 mal höher als die von Tonerden ohne die hitzebeständigen Einlagen. Diese Resultate schlagen vor, daß das eingeschobene Material, indem es die Tonschichten separiert, einen besseren Weg für den Verlust von Wasser während des Dehydroxylierungsvorgang verschafft.

Résumé

Résumé

La rapidité de déhydroxylation de smectites intercalates avec les produits de decomposition de Ni(phen)3SO4 est de 2 à 4 fois plus élevée que celle d'argiles sans l'intercalate stable à réchauffement. Ces résultats suggèrent que la matière intercalée fournit un chemin plus favorable à la perte d'eau pendant le processus de déhydroxylation en maintenant séparées les couches argileuses.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Journal article No. 8890, Michigan State Experiment Station. Work partially supported by National Science Foundation Grant CHE-76-80370.

References

Achar, B. N. N., Brindley, G. W., and Sharp, J. H. (1966) Kinetics and mechanism of dehydroxylation processes, III. Applications and limitations of dynamic methods: Proc. Int. Clay Conf., Jerusalem 1, 6773.Google Scholar
Barnhisel, R. I. and Rich, C. I. (1963) Gibbsite formation from aluminum interlayers in montmorillonite: Soil Sci. Soc. Amer. Proc. 27, 632635.CrossRefGoogle Scholar
Heller, L., Farmer, V. C., Mackenzie, R. C., Mitchell, B. D., and Taylor, H. F. W. (1962) The dehydroxylation and rehydroxylation of triphormic dioctahedral clay minerals: Clay Miner. Bull. 5, 5672.CrossRefGoogle Scholar
Loeppert, R. H., Mortland, M. M., and Pinnavaia, T. J. (1979) Synthesis and properties of heat-stable expanded smectite and vermiculite: Clays & Clay Minerals 27, 201208.CrossRefGoogle Scholar
Mackenzie, R. C. (1970) Simple phyllosilicates based on gibbsite and brucite-like sheets: in Differential Thermal Analysis, Vol. 1, Mackenzie, R. C., ed., Academic Press, N.Y., 497537.Google Scholar