Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T12:17:22.765Z Has data issue: false hasContentIssue false

Influence of Aqueous Si and Fe Speciation on Tetrahedral Fe(III) Substitutions in Nontronites: A Clay Synthesis Approach

Published online by Cambridge University Press:  01 January 2024

Fabien Baron*
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers, IC2MP UMR 7285, Université de Poitiers, CNRS, 86073 Poitiers, France
Sabine Petit
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers, IC2MP UMR 7285, Université de Poitiers, CNRS, 86073 Poitiers, France
Emmanuel Tertre
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers, IC2MP UMR 7285, Université de Poitiers, CNRS, 86073 Poitiers, France
Alain Decarreau
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers, IC2MP UMR 7285, Université de Poitiers, CNRS, 86073 Poitiers, France
*
*E-mail address of corresponding author: fabien.baron@univ-poitiers.fr

Abstract

Most dioctahedral 2:1 swelling clays in natural systems contain ferric iron, Fe(III), which can be located in both the tetrahedral and the octahedral sheets. The distribution of Fe(III) between octahedral and tetrahedral sites in nontronite depends on the Fe and Si speciation during nontronite synthesis. The role played by the chemical properties of solutions in the Fe(III) distribution between structural sites was studied through nontronite syntheses. A chemical series of Fe(III)-nontronites with variable tetrahedral [4]Fe(III) content (x) ([Si4-xFe(III)x]Fe(III)2O10(OH)2Nax) was synthesized at 150°C across a range of initial aqueous pH values between 11 and 14. The permanent layer charge, due to Fe(III)-for-Si(IV) tetrahedral substitutions only, ranged from 0.43 to as high as 1.54 per half-unit cell. A d063̄3 value of 1.562 Å was measured by X-ray diffraction (XRD) for the highest charged nontronite (x = 1.54). This high d063̄3 value has not been reported in the literature for a dioctahedral smectite until now. The [4]Fe(III) content (x) of the synthetic nontronites, estimated using Fourier-transform infrared spectroscopy (FTIR) through the wavenumber of the main stretching vSi-O band, was correlated with synthesis pH and its influence on calculated aqueous Si speciation. The increase in synthesis pH induced the increase in anionic aqueous Si species ratios (i.e. H3Si4(aq) and H2Si4(aq)), and favored the incorporation of Fe(III) in tetrahedral sites of synthesized nontronites. During nontronite formation in natural systems, the level of tetrahedral Fe(III)-for-Si(IV) substitutions may, therefore, be partly linked to the aqueous Si speciation and thus strongly dependent on the pH of the crystallization fluids.

Type
Article
Copyright
Copyright © Clay Minerals Society 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrieux, P. and Petit, S., 2010 Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series: Part I: Influence of experimental conditions Applied Clay Science 48 517.CrossRefGoogle Scholar
Baron, F. and Petit, S., 2016 Interpretation of the infrared spectra of the lizardite-nepouite series in the near- and midinfrared range American Mineralogist 101 423430.CrossRefGoogle Scholar
Brigatti, M.F., 1983 Relationships between composition and structure in Fe-rich smectites Clay Minerals 18 177186.CrossRefGoogle Scholar
Brindley, G.W., 1966 Ethylene glycol and glycerol complexes of smectites and vermiculites Clay Minerals 6 237259.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Cariati, F. Erre, L. Micera, G. Piu, P. and Gessa, C., 1983 Effects of layer charge on the near-infrared spectra of water molecules in smectites and vermiculites Clays and Clay Minerals 31 447449.CrossRefGoogle Scholar
Cariati, F. Erre, L. Micera, G. Piu, P. and Gessa, C., 1983 Polarization of water molecules in phyllosilicates in relation to exchange cations as studied by near infrared spectroscopy Clays and Clay Minerals 31 155157.CrossRefGoogle Scholar
Cariati, F. Erre, L. Micera, G. Piu, P. and Gessa, C., 1981 Water molecules and hydroxyl groups in montmorillonites as studied by near infrared spectroscopy Clays and Clay Minerals 29 157159.CrossRefGoogle Scholar
Chassin, P., 1972 Érretude de la conformation de la molécule d’éthane 1–2 diol adsorbée sur les phyllites 2-1 Bulletin du Groupe Français des Argiles 24 7988.CrossRefGoogle Scholar
Decarreau, A. and Petit, S., 2014 Fe3+/Al3+ partitioning between tetrahedral and octahedral sites in dioctahedral smectites Clay Minerals 49 657665.CrossRefGoogle Scholar
Decarreau, A. Petit, S. Vieillard, P. and Dabert, N., 2004 Hydrothermal synthesis of aegirine at 200°C European Journal of Mineralogy 16 8590.CrossRefGoogle Scholar
Decarreau, A. Petit, S. Martin, F. Farges, F. Vieillard, P. and Joussein, E., 2008 Hydrothermal synthesis, between 75 and 150°C, of high-charge, ferric nontronites Clays and Clay Minerals 56 322337.CrossRefGoogle Scholar
Eggleton, R.A., 1977 Nontronite: Chemistry and X-ray diffraction Clay Minerals 12 181194.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 5, The Mineralogical Society, London.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. Geoffroy, N. Jacquot, E. and Drits, V.A., 2007 Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location American Mineralogist 92 17311743.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Michot, L.J. and Robert, J.-L., 2010 Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge Part 1. Results from X-ray diffraction profile modeling. The Journal of Physical Chemistry C 114 45154526.Google Scholar
Fialips, C.-I. Huo, D. Yan, L. Wu, J. and Stucki, J.W., 2002 Effect of Fe oxidation state on the IR spectra of Garfield nontronite American Mineralogist 87 630641.CrossRefGoogle Scholar
Gates, W.P., Theo Kloprogge, J., 2005 Infrared spectroscopy and the chemistry of dioctahedral smectites The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides Aurora, Colorado, USA The Clay Minerals Society 125168.Google Scholar
Gates, W.P., 2008 Cation mass-valence sum (CM-VS) approach to assigning OH-bending bands in dioctahedral smectites Clays and Clay Minerals 56 1022.CrossRefGoogle Scholar
Gates, W.P. Slade, P.G. Manceau, A. and Lanson, B., 2002 Site occupancies by iron in nontronites Clays and Clay Minerals 50 223239.CrossRefGoogle Scholar
Gaudin, A. Buatier, M.D. Beaufort, D. Petit, S. Grauby, O. and Decarreau, A., 2005 Characterization and origin of Fe3+-montmorillonite in deep-water calcareous sediments (Pacific Ocean, Costa Rica margin) Clays and Clay Minerals 53 452465.CrossRefGoogle Scholar
Gaudin, A. Petit, S. Rose, J. Martin, F. Decarreau, A. Noack, Y. and Borschneck, D., 2004 The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia) II. Spectroscopic (IR and EXAFS) approaches. Clay Minerals 39 453467.Google Scholar
Goodman, B.A. Russell, J.D. Fraser, A.R. and Woodhams, F.W.D., 1976 A Mössbauer and I.R spectroscopic study of the structure of nontronite. Clays and Clay Minerals 24 5359.CrossRefGoogle Scholar
Grauby, O. Petit, S. Decarreau, A. and Baronnet, A., 1994 The nontronite-saponite series; an experimental approach European Journal of Mineralogy 6 99112.CrossRefGoogle Scholar
Gupta, V.K. Mohan, D. and Saini, V.K., 2006 Studies on the interaction of some azo dyes (naphthol red-J and direct orange) with nontronite mineral Journal of Colloid and Interface Science 298 7986.CrossRefGoogle ScholarPubMed
Heuser, M. Andrieux, P. Petit, S. and Stanjek, H., 2013 Iron-bearing smectites: a revised relationship between structural Fe, b cell edge lengths and refractive indices Clay Minerals 48 97103.CrossRefGoogle Scholar
Hofstetter, T.B. Neumann, A. and Schwarzenbach, R.P., 2006 Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites Environmental Science & Technology 40 235242.CrossRefGoogle ScholarPubMed
Iler, R.K., 1979 The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica New York Wiley.Google Scholar
Ilgen, A.G. Foster, A.L. and Trainor, T.P., 2012 Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony Geochimica et Cosmochimica Acta 94 128145.CrossRefGoogle Scholar
Jaisi, D.P. Dong, H. Plymale, A.E. Fredrickson, J.K. Zachara, J.M. Heald, S. and Liu, C., 2009 Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite Chemical Geology 264 127138.CrossRefGoogle Scholar
Keeling, J.L. Raven, M.D. and Gates, W.P., 2000 Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia Clays and Clay Minerals 48 537548.CrossRefGoogle Scholar
Köster, H.M. Ehrlicher, U. Gilg, H.A. Jordan, R. Murad, E. and Onnich, K., 1999 Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites Clay Minerals 34 579599.CrossRefGoogle Scholar
Li, H. Li, Y. Xiang, L. Huang, Q. Qiu, J. Zhang, H. Sivaiah, M.V. Baron, F. Barrault, J. Petit, S. and Valange, S., 2015 Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation Journal of Hazardous Materials 287 3241.CrossRefGoogle ScholarPubMed
Liu, R. Xiao, D. Guo, Y. Wang, Z. and Liu, J., 2014 A novel photosensitized Fenton reaction catalyzed by sandwiched iron in synthetic nontronite RSC Advances 4 1295812963.CrossRefGoogle Scholar
MacEwan, D.M.C., 1948 Complexes of clays with organic compounds I. Complex formation between montmorillonite and halloysite and certain organic liquids. Transactions of the Faraday Society 44 349367.Google Scholar
Madejová, J. Bujdak, J. Gates, W.P. and Komadel, P., 1996 Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents Clay Minerals 31 233241.CrossRefGoogle Scholar
Madejová, J. Balan, E. and Petit, S., 2011 Application of vibrational spectroscopy to the characterization of phyllosilicates and other industrial minerals Advances in the Characterization of Industrial Minerals 9 171226.CrossRefGoogle Scholar
Manceau, A. Drits, V.A. Lanson, B. Chateigner, D. Wu, J. Huo, D. Gates, W.P. and Stucki, J.W., 2000a Oxidationreduction mechanism of iron in dioctahedral smectites: II Crystal chemistry of reduced Garfield nontronite. American Mineralogist 85 153172.Google Scholar
Manceau, A. Lanson, B. Drits, V.A. Chateigner, D. Gates, W.P. Wu, J. Huo, D. and Stucki, J.W., 2000b Oxidationreduction mechanism of iron in dioctahedral smectites: I Crystal chemistry of oxidized reference nontronites. American Mineralogist 85 133152.Google Scholar
Michot, L.J. Bihannic, I. Pelletier, M. Rinnert, E. and Robert, J.L., 2005 Hydration and swelling of synthetic Nasaponi tes: Influence of layer charge American Mineralogist 90 166172.CrossRefGoogle Scholar
Neumann, A. Hofstetter, T.B. Lüssi, M. Cirpka, O.A. Petit, S. and Schwarzenbach, R.P., 2008 Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes Environmental Science & Technology 42 83818387.CrossRefGoogle ScholarPubMed
Neumann, A. Hofstetter, T.B. Skarpeli-Liati, M. and Schwarzenbach, R.P., 2009 Reduction of polychlorinated ethanes and carbon tetrachloride by structural Fe(II) in smectites Environmental Science & Technology 43 40824089.CrossRefGoogle ScholarPubMed
Neumann, A. Petit, S. and Hofstetter, T.B., 2011 Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy Geochimica et Cosmochimica Acta 75 23362355.CrossRefGoogle Scholar
Parkhurst, D.L. and Appelo, C.A.J., 2013.Description of input and examples for PHREEQC version 3 — A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations U.S. Geological Survey Techniques and MethodsCrossRefGoogle Scholar
Petit, S. Prot, T. Decarreau, A. Mosser, C. and Toledo-Groke, M.C., 1992 Crystallochemical study of a population of particles in smectites from a lateritic weathering profile Clays and Clay Minerals 40 436445.CrossRefGoogle Scholar
Petit, S. Robert, J.-L. Decarreau, A. Besson, G. Grauby, O. and Martin, F., 1995 Apport des méthodes spectroscopiques à la caractérisation des phyllosilicates 2:1 Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine 19 119147.Google Scholar
Petit, S. Caillaud, J. Righi, D. Madejová, J. Elsass, F. and Köster, H.M., 2002 Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany Clay Minerals 37 283297.CrossRefGoogle Scholar
Petit, S. Decarreau, A. Gates, W. Andrieux, P. and Grauby, O., 2015 Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series Part II: Crystal-chemistry. Applied Clay Science 104 96105.Google Scholar
Pokrovski, G.S. Schott, J. Farges, F. and Hazemann, J.-L., 2003 Iron (III)-silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy Geochimica et Cosmochimica Acta 67 35593573.CrossRefGoogle Scholar
Poulet, F. Bibring, J.-P. Mustard, J.F. Gendrin, A. Mangold, N. Langevin, Y. Arvidson, R.E. Gondet, B. and Gomez, C., 2005 Phyllosilicates on Mars and implications for early Martian climate Nature 438 623627.CrossRefGoogle ScholarPubMed
Poulet, F. Beaty, D.W. Bibring, J.-P. Bish, D. Bishop, J.L. Noe Dobrea, E. Mustard, J.F. Petit, S. and Roach, L.H., 2009 Key scientific questions and key investigations from the first international conference on Martian phyllosilicates Astrobiology 9 257267.CrossRefGoogle ScholarPubMed
Reynolds, R.C., 1965 An X-ray study of an ethylene-glycol montmorillonite complex American Mineralogist 50 9901001.Google Scholar
Sato, T. Watanabe, T. and Otsuka, R., 1992 Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites Clays and Clay Minerals 40 103113.CrossRefGoogle Scholar
Strickland, J.D.H. and Parsons, T.R., 1972 A Practical Handbook of Seawater Analysis Ottawa Fisheries Research Board of Canada.Google Scholar
Stubican, V. and Roy, R., 1961 Isomorphous substitution and infra-red spectra of the layer lattice silicates American Mineralogist 46 3251.Google Scholar
Stucki, J.W., Bergaya, F. and Lagaly, G., 2013 Properties and behaviour of iron in clay minerals Handbook of Clay Science 2nd Amsterdam Elsevier 559612.CrossRefGoogle Scholar
Suquet, H. and Pezerat, H., 1988 Comments on the classification of trioctahedral 2:1 phyllosilicates Clays and Clay Minerals 36 184186.CrossRefGoogle Scholar
Suquet, H. Iiyama, J.T. Kodama, H. and Pezerat, H., 1977 Synthesis and swelling properties of saponites with increasing layer charge Clays and Clay Minerals 25 231242.CrossRefGoogle Scholar
Suquet, H. Malard, C. and Pezerat, H., 1987 Structure et propriétés d’hydratation des nontronites Clay Minerals 22 157167.CrossRefGoogle Scholar
Yan, L. and Stucki, J.W., 1999 Effects of structural Fe oxidation state on the coupling of interlayer water and structural Si-O stretching vibrations in montmorillonite Langmuir 15 46484657.CrossRefGoogle Scholar
Yan, L. and Stucki, J.W., 2000 Structural perturbations in the solid-water interface of redox transformed nontronite Journal of Colloid and Interface Science 225 429439.CrossRefGoogle ScholarPubMed
Yang, J. Kukkadapu, R.K. Dong, H. Shelobolina, E.S. Zhang, J. and Kim, J., 2012 Effects of redox cycling of iron in nontronite on reduction of technetium Chemical Geology 291 206216.CrossRefGoogle Scholar
Zen, J.M. Jeng, S.H. and Chen, H.J., 1996 Catalysis of the electroreduction of hydrogen peroxide by nontronite clay coatings on glassy carbon electrodes Journal of Electroanalytical Chemistry 408 157163.CrossRefGoogle Scholar