Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T21:45:02.317Z Has data issue: false hasContentIssue false

In Situ Characterization and Differentiation of Kaolinites in Lateritic Weathering Profiles Using Infrared Microspectroscopy

Published online by Cambridge University Press:  01 January 2024

Anicet Beauvais*
Affiliation:
Cerege-IRD, UR-037, Europôle Méditerranéen de l'Arbois, B.P. 80, 13545 Aix-en-Provence Cedex, France
Jacques Bertaux
Affiliation:
IRD, UR-055, Centre d'Ile de France, LFS, 32 avenue Henri Varagnat, 93143 Bondy Cedex, France
*
*E-mail address of corresponding author: beauvais@arbois.cerege.fr

Abstract

Lateritic weathering kaolinites have been characterized in situ and differentiated for the first time by means of infrared microspectroscopy (IRMS). Four classical OH-stretching bands have been observed in the Fourier transform infrared (FTIR) spectra, at 3695, 3668, 3650 and 3620 cm−1, denoted ν1, ν2, ν3 and ν4, respectively, plus a band at 3595 cm−1 associated with the octahedral substitution of Fe3+ for Al3+. Infrared microspectroscopy of thin-sections of lateritic weathering profiles provides useful information on the types of kaolinite present in different horizons of the profile. The spectra obtained from large well-ordered kaolinite crystals look like those obtained by diffuse reflectance in that, compared with the KBr disk spectra of <2 µm powders, bands at 3668 and 3650 cm−1 are enhanced, and the strong absorption of KBr disks at 3695 cm−1 is replaced by a broad weaker band from 3700–3680 cm−1. In laterites, these large well-ordered kaolinites often exhibit a band at 3595 cm−1 indicative of significant Fe3+ substitution for Al3+ in the structure. The IR microspectra obtained from regions of small, more poorly-ordered kaolinites do not differ so markedly from that of KBr disks. All show enhanced absorption around 3650 cm−1 compared with well-ordered kaolinites, indicating that the disorder is due, at least in part, to domains of dickite-like and/or nacrite-like stacking in their structure. The 3595 cm−1 band is always weaker than that of the well-ordered kaolinite in the same profile. The IRMS data from well-characterized reference kaolinites show that the ratio Aν2/Aν3 is a pertinent IR order index for kaolinites. The larger this index, the larger is the area of the 3595 cm−1 band, and the larger and the more ordered is the kaolinite sample. It is suggested that the diversity of FTIR spectra observed reflects intergrowths of kaolinite-dickite polymorphs, or at least mixtures of high- and low-defect kaolinites which are frequently encountered in the lateritic geosphere rather than pure kaolinitic phases. The largest kaolinites having secondary crystallized in voids are the most ordered and the most ferruginous and have been considered as useful mineralogical tracers of the recent evolution of old lateritic terrains.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, T., (1994) La kaolinite: un dosimètre des rayonnements naturels. Application au traçage de migrations anciennes de radioéléments dans la géosphère Paris, France Université de Paris VII 205 pp.Google Scholar
Ambrosi, J.-P. and Nahon, D., (1986) Petrological and geochemical differentiation of lateritic iron crust profiles Chemical Geology 57 371393 10.1016/0009-2541(86)90059-8.CrossRefGoogle Scholar
Angel, B.R. Jones, J.P.E. and Hall, P.L., (1974) Electron spin resonance studies of doped synthetic kaolinite. I Clay Minerals 10 247255 10.1180/claymin.1974.010.4.03.CrossRefGoogle Scholar
Balan, E. Allard, T.h. Boizot, B. Morin, G. and Muller, J.-P., (1999) Structural Fe3+ in natural kaolinites: new insights from electron paramagnetic resonance spectra fitting at X and Q-band frequencies Clays and Clay Minerals 47 605616 10.1346/CCMN.1999.0470507.CrossRefGoogle Scholar
Barrios, J. Plançon, M. Cruz, I. and Tchoubar, C., (1977) Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinte — Relationship with the infrared spectra Clays and Clay Minerals 25 422429 10.1346/CCMN.1977.0250608.CrossRefGoogle Scholar
Beauvais, A., (1991) Paléoclimats et dynamique d’un paysage cuirassé du Centrafrique. Morphologie, Pétrologie et Géochimie Poitiers, France Université de Poitiers 317 pp.Google Scholar
Beauvais, A., (1999) Geochemical balance of lateritization processes and climatic signatures in weathering profiles overlain by ferricretes in Central Africa Geochimica et Cosmochimica Acta 63 39393957 10.1016/S0016-7037(99)00173-8.CrossRefGoogle Scholar
Beauvais, A. and Colin, F., (1993) Formation and transformation processes of iron duricrust systems in tropical humid environment Chemical Geology 106 77151 10.1016/0009-2541(93)90167-H.CrossRefGoogle Scholar
Beauvais, A. and Tardy, Y., (1991) Formation et dégradation des cuirasses ferrugineuses sous climat tropical humide, à la lisière de la forêt equatoriale Comptes Rendus de l’Académie des Sciences, Paris 13 1539 1545.Google Scholar
Bell, V.A. Citro, V.R. and Hodge, G.D., (1991) Effect of pellet pressing on the infrared spectrum of kaolinite Clays and Clay Minerals 39 290292 10.1346/CCMN.1991.0390309.CrossRefGoogle Scholar
Bish, D.L., (1993) Rietveld refinement of the kaolinite structure at 1.5 K Clays and Clay Minerals 41 738744 10.1346/CCMN.1993.0410613.CrossRefGoogle Scholar
Brindley, G.W. Kao, C.-C. Harrison, J.L. Lipsicas, M. and Raythatha, R., (1986) Relation between structural disorder and other characteristics of kaolinites and dickites Clays and Clay Minerals 34 239249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Cantinolle, P. Didier, P. Meunier, J.-D. Parron, C. Guendon, J.-L. Bocquier, G. and Nahon, D., (1984) Kaolinites ferrifères et oxyhydroxydes de fer et d’alumine dans les bauxites des Canonettes (S. E. de la France) Clay Minerals 19 125135 10.1180/claymin.1984.019.2.01.CrossRefGoogle Scholar
Cases, J.-M. Liétard, O. Yvon, J. and Delon, J.-F., (1982) Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnees Bulletin de Minéralogie 105 439 455.CrossRefGoogle Scholar
Cruz-Cumplido, M. Sow, C. and Fripiat, J.J., (1982) Spectre infrarouge des hydroxyles, cristallinité et énergie de cohésion des kaolins Bulletin de Minéralogie 105 493 498.CrossRefGoogle Scholar
Delineau, T. Allard, T. Muller, J.-P. Barres, O. Yvon, J. and Cases, J.-M., (1994) FTIR reflectance vs. EPR studies of structural iron in kaolinites Clays and Clay Minerals 42 308320 10.1346/CCMN.1994.0420309.CrossRefGoogle Scholar
Didier, P. Nahon, D. Fritz, B. and Tardy, Y., (1983) Activity of water as a geochemical controlling factor in ferricretes. A thermodynamic model in the system kaolinite Fe-Al oxyhydroxides Sciences Geologiques 71 25 44.Google Scholar
Farmer, V.C., (1964) Infrared absorption of hydroxyls groups in kaolinite Science 145 11891190 10.1126/science.145.3637.1189.CrossRefGoogle ScholarPubMed
Farmer, V.C., (1974) The Infrared Spectra of Minerals London The Mineralogical Society 10.1180/mono-4.CrossRefGoogle Scholar
Farmer, V.C., (1998) Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite Clay Minerals 33 601604 10.1180/claymin.1998.033.4.07.CrossRefGoogle Scholar
Farmer, V.C., (2000) Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite Spectrochimica Acta 56A 927930 10.1016/S1386-1425(99)00182-1.CrossRefGoogle Scholar
Farmer, V.C. and Russell, J.D., (1964) The infrared spectra of layer silicates Spectrochimica Acta 20 11491173 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
Frost, R.L. and Johansson, U., (1998) Combinations bands in the infrared spectroscopy of kaolins — a drift spectroscopic study Clays and Clay Minerals 46 466477 10.1346/CCMN.1998.0460411.CrossRefGoogle Scholar
Frost, R.L. and Van der Gaast, S.J., (1997) Kaolinite hydroxyls — a Raman microscopy study Clay Minerals 32 471484 10.1180/claymin.1997.032.3.09.CrossRefGoogle Scholar
Gaite, J.-M. Ermakoff, P. and Muller, J.-P., (1993) Characterization and origin of two Fe3+ EPR spectra in kaolinite Physics and Chemistry of Minerals 20 242247 10.1007/BF00208137.CrossRefGoogle Scholar
Gaite, J.-M. Ermakoff, P. Allard, T.h. and Muller, J.-P., (1997) Paramagnetic Fe3+: a sensitive probe for disorder in kaolinite Clays and Clay Minerals 45 496505 10.1346/CCMN.1997.0450402.CrossRefGoogle Scholar
Giese, R.F. Jr and Bailey, S.W., (1988) Kaolin minerals. Structures and stability Hydrous Phyllosilicates Washington, D.C. Mineralogical Society of America 2966 10.1515/9781501508998-008 Reviews in Mineralogy, 19 .CrossRefGoogle Scholar
Herbillon, A.J. and Theng, B.K.G., (1980) Mineralogy of oxisols and oxic materials Soils with Variable Charge Wellington, New Zealand New Zealand Society of Soil Science 109 126.Google Scholar
Hinckley, D.N. (1963) Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Pp. 229235 in: Proceedings of the 11th National Clay Conference, Ottawa (Swineford, A., editor). Pergamon Press, New York.Google Scholar
Johansson, U. Holmgren, A. Forsling, W. and Frost, R., (1998) Isotopic exchange of kaolinite hydroxyl protons: a diffuse reflectance infrared Fourier transform spectroscopy study Analyst 123 641645 10.1039/a707060h.CrossRefGoogle Scholar
Johnston, C.T. Sposito, G. and Birge, R.R., (1985) Raman spectroscopy study of kaolinite in aqueous suspension Clays and Clay Minerals 33 483489 10.1346/CCMN.1985.0330602.CrossRefGoogle Scholar
Johnston, C.T. Agnew, S.F. and Bish, D.L., (1990) Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite Clays and Clay Minerals 38 573588 10.1346/CCMN.1990.0380602.CrossRefGoogle Scholar
Johnston, C.T. Helsen, J. Schoonheydt, R.A. Bish, D.L. and Agnew, S.F., (1998) Single-crystal Raman spectroscopic study of dickite American Mineralogist 83 7584 10.2138/am-1998-1-208.CrossRefGoogle Scholar
Jones, J.P.E. Angel, B.R. and Hall, P.L., (1974) Electron spin resonance studies of doped synthetic kaolinite. II Clay Minerals 10 257270 10.1180/claymin.1974.010.4.04.CrossRefGoogle Scholar
Ledoux, R.L. and White, J.L., (1964) Infrared study of selective deuteration of kaolinite and halloysite at room temperature Science 145 4749 10.1126/science.145.3627.47.CrossRefGoogle ScholarPubMed
Lombardi, G. Russell, J.D. and Keller, W.D., (1987) Compositional and structural variations in the size fractions of a sedimentary and a hydrothermal kaolin Clays and Clay Minerals 35 321335 10.1346/CCMN.1987.0350501.CrossRefGoogle Scholar
Lucas, Y., Chauvel, A. and Ambrosi, J.-P. (1987) Processes of aluminium and iron accumulation in latosols developed on quartz-rich sediments from central Amazonia (Manaus, Brazil). Pp. 289299 in: Proceedings of the International Meeting on Geochemistry of the Earth Surface and Processes of Mineral formation, Granada, Spain (Rodríguez-Clemente, R. and Tardy, Y., editors). Madrid: Consejo Superior de Investigaciones Cientificas; Paris: Centre National de la Recherche Scientifique (CNRS).Google Scholar
Marquardt, D.W., (1963) An algorithm for least-squares estimation of nonlinear parameters Journal of the Society of Industrial Applied Mathematics 11 431441 10.1137/0111030.CrossRefGoogle Scholar
Meads, R.E. and Malden, P.S., (1975) Electron-spin resonance in natural kaolinites containing Fe3+ and other transition metal ions Clay Minerals 10 313345 10.1180/claymin.1975.010.5.01.CrossRefGoogle Scholar
Mendelovici, E. Yariv, S.H. and Villalba, R., (1979) Iron-bearing kaolinite in Venezuelan laterite. I. Infrared spectrosocopy and chemical dissolution evidence Clay Minerals 14 323331 10.1180/claymin.1979.014.4.08.CrossRefGoogle Scholar
Mestdagh, M.M. Vielvoye, L. and Herbillon, A.J., (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content Clay Minerals 15 113 10.1180/claymin.1980.015.1.01.CrossRefGoogle Scholar
Mestdagh, M.M. Herbillon, A.J. Rodrique, L. and Rouxhet, P.G., (1982) Evaluation du rôle du fer structural sur la cristalinité des kaolinites Bulletin de Mineralogie 105 457 466.CrossRefGoogle Scholar
Millot, G., (1970) Geology of Clays: Weathering, Sedimentation, Geochemistry New York Springer 10.1007/978-3-662-41609-9 429 pp.CrossRefGoogle Scholar
Muller, J.-P. Bocquier, G., Schultz, L.G. van Olphen, H. and Mumpton, F.A., (1987) Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon Proceedings of the International Clay Conference Bloomington, Indiana The Clay Minerals Society 186194 1985.Google Scholar
Muller, J.-P. and Calas, G., (1989) Tracing kaolinites through their defect centers: kaolinite paragenesis in a laterite (Cameroon) Economic Geology 84 694707 10.2113/gsecongeo.84.3.694.CrossRefGoogle Scholar
Muller, J.-P. Manceau, A. Calas, G. Allard, T. Ildefonse, P.h. and Hazemann, J.-L., (1995) Crystal chemistry of kaolinite and Fe-Mn oxides: relation with formation conditions of low temperature systems American Journal of Science 295 11151155 10.2475/ajs.295.9.1115.CrossRefGoogle Scholar
Murray, H.H. and Bailey, S.W., (1988) Kaolin minerals: their genesis and occurrences Hydrous Phyllosilicates Washington, D.C. Mineralogical Society of America 6790 10.1515/9781501508998-009 Reviews in Mineralogy, 19 .CrossRefGoogle Scholar
Nahon, D., (1991) Introduction to the Petrology of Soils and Chemical Weathering New York John Wiley 313 pp.Google Scholar
Parker, T.W., (1969) Classification of kaolinites by infrared spectroscopy Clay Minerals 8 1935 10.1180/claymin.1969.008.2.02.CrossRefGoogle Scholar
Petit, S. and Decarreau, A., (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron rich kaolinites Clay Minerals 25 181196 10.1180/claymin.1990.025.2.04.CrossRefGoogle Scholar
Plançon, A. Giese, R.F. and Snyder, R., (1988) The Hinckley index for kaolinites Clay Minerals 23 249260 10.1180/claymin.1988.023.3.02.CrossRefGoogle Scholar
Plançon, A. Giese, R.F. Snyder, R. Drits, V.A. and Bookin, A.S., (1989) Stacking faults in the kaolin-group minerals: defect structures of kaolinite Clays and Clay Minerals 37 203210 10.1346/CCMN.1989.0370302.CrossRefGoogle Scholar
Prost, R. Dameme, A. Huard, E. Driard, J. and Leydecker, J.-P., (1989) Infrared study of structural OH in kaolinite, dickite, nacrite and poorly crystalline kaolinite at 5 to 600°K Clays and Clay Minerals 37 464468 10.1346/CCMN.1989.0370511.CrossRefGoogle Scholar
Rengasamy, P., (1976) Substitution of iron and titanium in kaolinites Clays and Clay Minerals 24 264266 10.1346/CCMN.1976.0240509.CrossRefGoogle Scholar
Rintoul, L. and Fredericks, P.M., (1995) Infrared microspectroscopy of bauxitic pisoliths Applied Spectroscopy 49 16081616 10.1366/0003702953965696.CrossRefGoogle Scholar
Rouxhet, P.G. Samadacheata, N. Jacobs, H. and Anton, O., (1977) Attribution of the OH stretching bands of kaolinite Clay Minerals 12 171179 10.1180/claymin.1977.012.02.07.CrossRefGoogle Scholar
Tardy, Y. (1993) Pétrologie des Latérites et des Sols Tropicaux. Masson, Paris, 535.Google Scholar
Van Olphen, H. and Fripiat, J.-J., (1979) Data Handbook for Clay Minerals and other Non-metallic Minerals Oxford, UK Pergamon Press 346 pp.Google Scholar
Wiewióra, A. Wieckowski, T. and Sokolowska, A., (1979) The raman spectra of kaolinite subgroup minerals and of pyrophyllite Archiwum Mineralogiczne 135 5 14.Google Scholar