Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-27T07:53:38.625Z Has data issue: false hasContentIssue false

Illite and Smectite: Metastable, Stable or Unstable? Further Discussion and a Correction

Published online by Cambridge University Press:  28 February 2024

E. J. Essene
Affiliation:
Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109-1063
D. R. Peacor
Affiliation:
Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109-1063

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Reply
Copyright
Copyright © 1997, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aja, S.U.. 1991. Illite equilibria in solutions: III. A reinterpretation of the data of Sass et al. (1987). Geochim Cosmochim Acta 55: 34313435.CrossRefGoogle Scholar
Aja, S.U. and Rosenberg, P.E.. 1992. The thermodynamic status of compositionally variable clay minerals: A discussion. Clays Clay Miner 40: 292299.CrossRefGoogle Scholar
Aja, S.U. and Rosenberg, P.E.. 1996. The thermodynamic status of compositionally variable clay minerals: Discussion of “Clay mineral thermometry—A critical perspective”. Clays Clay Miner 44: 560568.CrossRefGoogle Scholar
Aja, S.U., Rosenberg, P.E. and Kittrick, J.A.. 1991. Illite equilibria in solutions: I. Phase relationships in the system K2O-Al2O3-SiO2-H2O between 25° and 250 °C. Geochim Cosmochim Acta 55: 13531364.CrossRefGoogle Scholar
Bjørkum, P.A. and Gjelsvik, N.. 1988. An isochemical model for formation of authigenic kaolinite, K-feldspar and illite in sediments. J Sed Petrol 58: 506511.Google Scholar
Bowers, T.S., Jackson, K.J. and Helgeson, H.C.. 1984. Equilibrium activity diagrams. Berlin and NY: Springer-Verlag. 397 p.CrossRefGoogle Scholar
Eggleton, R.A.. 1987. Noncrystalline Fe-Si-Al-oxyhydroxides. Clays Clay Miner 35: 2937.CrossRefGoogle Scholar
El Shazly, A.L.D.K.. 1995. On the thermodynamic data of kaolinite. Am Mineral 90: 10481053.CrossRefGoogle Scholar
Essene, E.J. and Peacor, D.R.. 1995. Clay mineral thermometry—A critical perspective. Clays Clay Miner 43: 540553.CrossRefGoogle Scholar
Franks, F.. 1981. Polywater. Cambridge, MA: MIT Pr. 288 p.Google Scholar
Fyfe, W.S.. 1960. Hydrothermal synthesis and determination of equilibrium between minerals in the subliquidus region. J Geol 68: 553566.CrossRefGoogle Scholar
Huang, W.-L., Longo, J.M. and Pevear, D.R.. 1993. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays Clay Miner 41: 162177.CrossRefGoogle Scholar
Jiang, W.-T., Peacor, D.R. and Essene, E.J.. 1990. Transmission electron microscopic study of coexisting pyrophyllite and muscovite: Direct evidence for the metastability of illite. Clays Clay Miner 38: 225240.CrossRefGoogle Scholar
Jiang, W.-T., Peacor, D.R. and Essene, E.J.. 1994. Analytical and transmission electron microscopic study of clay minerals in sandstone of Kettleman North Dome, California: Implications for the metastability of illite. Clays Clay Miner 42: 3545.CrossRefGoogle Scholar
Lippmann, F.. 1977. The solubility products of complex minerals, mixed crystals and three-layer clay minerals. N Jb Miner Abh 130: 243263.Google Scholar
Lippmann, F.. 1982. The thermodynamic status of clay minerals. In: van Olphen, H., Veniale, F., editors. Proc Int Clay Conf; Bologna, Pavia: 1981. NY: Elsevier. p 475485.Google Scholar
Masuda, H., O'Neil, J.R., Jiang, W.-T. and Peacor, D.R.. 1996. Relation between interlayer composition of authigenic smectite, mineral assemblages, I/S reaction rate and fluid composition in silicic ash of the Nankai Trough. Clays Clay Miner 44: 443459.CrossRefGoogle Scholar
Montoya, J.W. and Hemley, J.J.. 1975. Activity relations and stabilities in alkali feldspar and mica alteration reactions. Econ Geol 70: 577583.CrossRefGoogle Scholar
Peacor, D.R.. 1992a. Diagenesis and low-grade metamorphism of shales and slates. In: Buseck, P.R., editor. Minerals and reactions at the atomic scale. Rev Mineral 27: 335380.CrossRefGoogle Scholar
Peacor, D.R.. 1992b. Analytical electron microscopy: X-ray analysis. In: Buseck, P.R., editor. Minerals and reactions at the atomic scale. Rev Mineral 27: 113140.CrossRefGoogle Scholar
Rosenberg, P.E. and Hooper, R.L.. 1996. Determination of the chemical composition of natural illites by analytical electron microscopy. Clays Clay Miner 44: 569572.CrossRefGoogle Scholar
Sass, B.M., Rosenberg, P.E. and Kittrick, J.A.. 1987. The stability of illite/smectite during diagenesis: An experimental study. Geochim Cosmochim Acta 51: 21032115.CrossRefGoogle Scholar
Schiffman, P. and Southard, R.J.. 1996. Cation exchange capacity of layer silicates and palagonitized glass in mafic volcanic rocks: A comparative study of bulk extraction and in situ techniques. Clays Clay Miner 44: 624635.CrossRefGoogle Scholar
Sverjensky, D.M., Hemley, J.J. and D'Angelo, W.M.. 1991. Thermodynamic assessment of hydrothermal alkali feldsparmica-aluminosilicate equilibria. Geochim Cosmochim Acta 55: 9891004.CrossRefGoogle Scholar
Vonnegut, K.. 1963. Cat's cradle. NY: Delacorte. 191 p.Google Scholar
Yates, D.M. and Rosenberg, P.E.. 1993. Hydrothermal transformation of muscovite to endmember illite at 250 °C and Pv,H2O [abstract]. Geol Soc Am Abst Prog 25: 437.Google Scholar
E-An, Z.e.n.. 1966. Construction of P-T diagrams for multi-component systems after the method of Schreinemakers—A geometrical approach. Washington DC: US Geol Surv Bull 1225. 37 p.Google Scholar
Zhou, Z., Fyfe, W.S., Tazaki, K. and van der Gaast, S.J.. 1992. The structural characteristics of palagonite from DSDP Site 335. Can Mineral 30: 7581.Google Scholar