Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T00:16:09.818Z Has data issue: false hasContentIssue false

Identification and Characterization of Nanoclays in Gamalama Volcanic Soil of Northern Maluku

Published online by Cambridge University Press:  01 January 2024

I. Cipta
Affiliation:
Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia Department of Chemistry Education, Universitas Khairun, Ternate, Indonesia
F. Febiyanto
Affiliation:
Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
A. Syoufian
Affiliation:
Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
I. Kartini*
Affiliation:
Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia

Abstract

Clay minerals in Gamalama volcanic soil have not yet been identified thoroughly. The soil is estimated to contain nanoscale natural clays, such as halloysite or imogolite. The occurrence of nanoclays in the soil will support the development of many applications in nanotechnologies from nature. The objective of the present study was to characterize soil samples from five different locations around the volcano at three different depths from the soil surface. A total of 50 g of dry soil sample was stirred slowly in 300 mL of distilled water. Stirring was stopped after the addition of 10 mL of 30% H2O2 and then allowed to stand for 24 h. The small floating particles with dimensions of <2 μm were separated from the mixture and collected using a centrifuge at 4000 rpm (1790×g) for 30 min. About 5 g of solid sample was obtained for further characterization. X-ray diffraction results showed the presence of halloysite, allophane, and kaolinite. Morphology analysis by scanning and transmission electron microscopy of some representative samples showed short tubes 10–20 nm in diameter and 50–100 nm long with the halloysite structure. Halloysite was found at 70 cm depth from the soil surface at almost all locations. The surface area determined by the surface area analyzer using the BET equation was as much as 112.51 m2/g. This surface area is thought to be the largest ever determined for a natural nanoclay, paving the way for future application as catalytic or photocatalytic-supporting materials.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bac, B., Dung, N., Khang, L., Hung, K., Lam, N., An, D., ... Tinh, B. (2018). Distribution and Characteristics of Nanotubular Halloysites in the Thach Khoan Area, Phu Tho, Vietnam. Minerals, 8(7), 290302.CrossRefGoogle Scholar
Ben M'barek Jemaï, M., Sdiri, A., Errais, E., Duplay, J., Ben Saleh, I., Zagrarni, M. F., & Bouaziz, S. (2015). Characterization of the Ain Khemouda halloysite (western Tunisia) for ceramic industry. Journal of African Earth Sciences, 111, 194201.CrossRefGoogle Scholar
Bonelli, B., Bottero, I., Ballarini, N., Passeri, S., Cavani, F., & Garrone, E. (2009). IR spectroscopic and catalytic characterization of the acidity of imogolite-based systems. Journal of Catalysis, 264(1), 1530.CrossRefGoogle Scholar
Bordeepong, S., Bhongsuwan, D., Pungrassami, T., & Bhongsuwan, T. (2011). Characterization of halloysite from Thung Yai District. Journal of Science and Technology, 33, 599607.Google Scholar
Calabi-Floody, M., Bendall, J. S., Jara, A. A., Welland, M. E., Theng, B. K. G., Rumpel, C., & Mora, M. de la L. (2011). Nanoclays from an Andisol: Extraction, properties and carbon stabilization. Geoderma, 161(3-4), 159167.CrossRefGoogle Scholar
Cipta, I., Limatahu, N. A., Nur Abu, S. H., Kartini, I., & Arryanto, Y. (2017). Characterization of allophane from Gamalama volcanic soil, North Maluku, Indonesia. Asian Journal of Chemistry, 29(8), 17021704.CrossRefGoogle Scholar
Cradwick, P. D. G., Farmer, V. C., Russel, J. D., Masson, C. R., Wada, K., & Yoshinaga, N. (1972). Imogolite, a Hydrated Aluminium Silicate of Tubular Structure. Nature Physical Science, 240(104), 187189.CrossRefGoogle Scholar
Cravero, F., Fernández, L., Marfil, S., Sánchez, M., Maiza, P., & Martínez, A. (2016). Spheroidal halloysites from Patagonia, Argentina: Some aspects of their formation and applications. Applied Clay Science, 131, 4858.CrossRefGoogle Scholar
Delmelle, P., Opfergelt, S., Cornelis, J.-T., & Ping, C.-L. (2015). Volcanic Soils. In The Encyclopedia of Volcanoes (2nd ed.). Elsevier.Google Scholar
Dong, F., Meng, Y., Han, W., Zhao, H., & Tang, Z. (2019). Morphology effects on surface chemical properties and lattice defects of Cu/CeO2 catalysts applied for low-temperature CO oxidation. Scientific Reports, 9(1), 12056.CrossRefGoogle Scholar
Frost, R. L., Kristof, J., Horvath, E., & Kloprogge, J. T. (2000). Rehydration and phase changes of potassium acetate-intercalated halloysite at 298 K. Journal of Colloid and Interface Science, 226(2), 318327.CrossRefGoogle Scholar
Garcia-Valles, M., Alfonso, P., Martínez, S., & Roca, N. (2020). Mineralogical and thermal characterization of kaolinitic clays from Terra Alta (Catalonia, Spain). Minerals, 10(2), 142156.CrossRefGoogle Scholar
Guimarães, L., Enyashin, A. N., Seifert, G., & Duarte, H. A. (2010). Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. Journal of Physical Chemistry C, 114(26), 1135811363.CrossRefGoogle Scholar
Gusman, M., Nazki, A., & Putra, R. R. (2018). The modelling influence of water content to mechanical parameter of soil in analysis of slope stability. Journal of Physics: Conference Series, 1008(1), 012022.Google Scholar
Hanif, M., Jabbar, F., Sharif, S., Abbas, G., Farooq, A., & Aziz, M. (2016). Halloysite nanotubes as a new drug-delivery system: a review. Clay Minerals, 51, 469477.CrossRefGoogle Scholar
Henmi, T., Tange, K., Minagawa, T., & Yoshinaga, N. (1981). Effect of SiO2/Al2O3 ratio on the thermal reactions of allophane. II. Infrared and x-ray powder diffraction data. Clays and Clay Minerals, 29, 124128.CrossRefGoogle Scholar
Henmi, T., & Wada, K. (1976). Morphology and composition of allophane. American Mineralogist, 61, 379390.Google Scholar
Harsh, J. (2005). Amorphous Materials. In Encyclopedia of Soils in the Environment (pp. 6471). Elsevier.CrossRefGoogle Scholar
Huggett, J. M. (2005). Clay Minerals. In Encyclopedia of Geology (pp. 358365). Elsevier.CrossRefGoogle Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., & Delvaux, B. (2005). Halloysite clay minerals - a review. Clay Minerals, 40, 383426.CrossRefGoogle Scholar
Kamble, R., Ghag, M., Gaikawad, S., & Panda, B. K. (2012). Halloysite nanotubes and applications: a review. Journal of Advanced Scientific Research, 3, 2529.Google Scholar
Levard, C., Doelsch, E., Basile-Doelsch, I., Abidin, Z., Miche, H., Masion, A., ... Bottero, J. Y. (2012). Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. Geoderma, 183–184, 100108.CrossRefGoogle Scholar
Lutyński, M., Sakiewicz, P., & Lutyńska, S. (2019). Characterization of diatomaceous earth and halloysite resources of Poland. Minerals, 9, 670686.CrossRefGoogle Scholar
Mehra, O. P., & Jackson, M. L. (1958). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317327.CrossRefGoogle Scholar
Moriau, L., Bele, M., Marinko, Z., Ruiz-Zepeda, F., Koderman Podboršek, G., Šala, M., ... Suhadolnik, L. (2021). Effect of the Morphology of the High-Surface-Area Support on the Performance of the Oxygen-Evolution Reaction for Iridium Nanoparticles. ACS Catalysis, 11(2), 670681.CrossRefGoogle ScholarPubMed
Papoulis, D., Komarneni, S., Nikolopoulou, A., Tsolis-Katagas, P., Panagiotaras, D., Kacandes, H. G., ... Katsuki, H. (2010). Palygorskite- and Halloysite-TiO2 nanocomposites: Synthesis and photocatalytic activity. Applied Clay Science, 50, 118124.CrossRefGoogle Scholar
Parfitt, R. L., Furkert, R. J., & Henmi, T. (1980). Identification and structure of two types of allophane from volcanic ash soils and tephra. Clays and Clay Minerals, 28, 328334.CrossRefGoogle Scholar
Parfitt, R. L., Russell, M., & Orbell, G. E. (1983). Weathering sequence of soils from volcanic ash involving allophane and halloysite, New Zealand. Geoderma, 29, 4157. https://doi.org/10.1016/0016-7061(83)90029-0CrossRefGoogle Scholar
Pasbakhsh, P., Churchman, G. J., & Keeling, J. L. (2013). Characterization of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Applied Clay Science, 74, 4757.CrossRefGoogle Scholar
Ramadass, K., Singh, G., Lakhi, K. S., Benzigar, M. R., Yang, J. H., Kim, S., ... Vinu, A. (2019). Halloysite nanotubes: Novel and eco-friendly adsorbents for high-pressure CO2 capture. Microporous and Mesoporous Materials, 277, 229236.CrossRefGoogle Scholar
Simkin, T., & Siebert, L. (1994). Volcanoes of Indonesia. In Volcano Discovery (p. 349). Springer Netherlands.Google Scholar
Takahashi, T., Dahlgren, R. A., Theng, B. K. G., Whitton, J. S., & Soma, M. (2001). Potassium-Selective, Halloysite-Rich Soils Formed in Volcanic Materials from Northern California. Soil Science Society of America Journal, 65, 516526.CrossRefGoogle Scholar
Takahashi, T., & Shoji, S. (2001). Distribution and classification of volcanic ash soil. Global Environmental Research, 6, 8396.Google Scholar
Tunega, D., & Zaoui, A. (2020). Mechanical and Bonding Behaviors behind the Bending Mechanism of Kaolinite Clay Layers. Journal of Physical Chemistry C, 124, 74327440.CrossRefGoogle ScholarPubMed
Vacca, A., Adamo, P., Pigna, M., & Violante, P. (2003). Genesis of Tephra-derived Soils from the Roccamonfina Volcano, South-Central Italy. Soil Science Society of America Journal, 207, 198207.Google Scholar
Van Ranst, E., Kips, P., Mbogoni, J., Mees, F., Dumon, M., & Delvaux, B. (2020). Halloysite-smectite mixed-layered clay in fluvio-volcanic soils at the southern foot of Mount Kilimanjaro, Tanzania. Geoderma, 375, 114527114539.CrossRefGoogle Scholar
Wahyuzi, R., Zakaria, Z., & Sophian, R. I. (2018). Slope stability affected by percentage of soil water content in Dago Giri, West Bandung regency. AIP Conference Proceedings, 1987(1), 020030.CrossRefGoogle Scholar
Wang, X., Cheng, H., Chai, P., Bian, J., Wang, X., Liu, Y., & Pan, Z. (2020). Pore Characterization of Different Clay Minerals and Its Impact on Methane Adsorption Capacity. Energy & Fuels, 34, 1220412214.CrossRefGoogle Scholar
Yuan, P., Southon, P. D., Liu, Z., Green, M. E. R., Hook, J. M., Antill, S. J., & Kepert, C. J. (2008). Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. Journal of Physical Chemistry C, 112, 1574215751.CrossRefGoogle Scholar
Zehetner, F., Miller, W. P., & West, L. T. (2003). Pedogenesis of Volcanic Ash Soils in Andean Ecuador. Soil Science Society of America Journal, 67, 17971809.CrossRefGoogle Scholar
Zhou, S., Zhu, X., Lu, C., & Li, F. (2022). Synthesis and characterization of geopolymer from lunar regolith simulant based on natural volcanic scoria. Chinese Journal of Aeronautics, 35, 144159.CrossRefGoogle Scholar