Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T18:57:26.870Z Has data issue: false hasContentIssue false

Hysteresis in the Binary Exchange of Cations on 2:1 Clay Minerals: A Critical Review

Published online by Cambridge University Press:  28 February 2024

Kirsten Verburg
Affiliation:
Department of Soil, Crop and Atmospheric Sciences, Bradfield Hall Cornell University, Ithaca, New York 14853-1901
Philippe Baveye
Affiliation:
Department of Soil, Crop and Atmospheric Sciences, Bradfield Hall Cornell University, Ithaca, New York 14853-1901

Abstract

The binary exchange of cations on clays and soils is generally regarded as a thermodynamically reversible process. The literature on soil chemistry and geochemistry, however, abounds with reports on cation exchange reactions that appear to have only limited reversibility, i.e., that exhibit hysteresis. A satisfactory explanation of this phenomenon is still lacking, even though a number of mechanisms have been advocated, e.g., charge or site heterogeneity at the surface, differential hydration of cations, dehydration of the exchanger, crystalline swelling hysteresis, and inaccessibility of sites caused by domain or quasi-crystal formation. In the present article, the relevant literature is reviewed and analyzed critically. On the basis of available evidence, it is shown that exchangeable cations can be classified into three groups, defined in such a way that hysteresis has, in the literature, generally not been observed when exchange reactions involved cations belonging to the same group, but has often been found when the reactions involved cations from different groups. Furthermore, it is argued that none of the five mechanisms mentioned can, in and of itself, account fully for the observed exchange hysteresis. A conceptual model is proposed that combines elements of these five mechanisms and is able to describe, at least qualitatively, the effects of factors such as clay type, electrolyte concentration, and extent of dehydration.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aylmore, L. A. G., and Quirk, J. P., (1959) Swelling of clay-water systems: Nature 183, 17521753.CrossRefGoogle Scholar
Ball, N. B., (1981) Colloidal properties of coagulated calcium-montmorillonite suspensions: Ph.D. dissertation, University of California, Riverside, 145 pp.Google Scholar
Banin, A., and Lahav, N., (1968). Particle size and optical properties of montmorillonite in suspension: Isr. J. Chem. 6, 235250.CrossRefGoogle Scholar
Baveye, P., and Charlet, L., (1987) Exchanger phase activity coefficients and analysis of the exchange properties of clays and soils: Agrochimica 32, 7380.Google Scholar
Blackmore, A. V., and Miller, R. D., (1961) Tactoid size and osmotic swelling in calcium montmorillonite: Soil Sci. Soc. Am. Proc. 25, 169173.CrossRefGoogle Scholar
Bolt, G. H., (1982) Thermodynamics of cation exchange: in Soil Chemistry B. Physico-chemical Models, Bolt, G. H., ed., Elsevier, Amsterdam , 2746.Google Scholar
Borland, J. W., and Reitemeier, R. F., (1950) Kinetic exchange studies on clays with radioactive calcium: Soil Sci. 69, 251260.CrossRefGoogle Scholar
Bose, S. K., (1957) Study of interaction between homoionic clays and electrolytes by means of activity measurements: J. Indian Soc. Soil Sci. 5, 141145.Google Scholar
Cebula, D. J., Thomas, R. K., and White, J. W., (1979) The structure and dynamics of clay-water systems studied by neutron scattering: in Proc. Int. Clay Conf. Oxford. 1978, Mortland, M. M., and Farmer, V. C., eds., Elsevier, Amsterdam , 111120.Google Scholar
Comans, R. N. J., Haller, M., and DePreter, P., (1991) Sorption of cesium on illite: Non-equilibrium behaviour and reversibility: Geochim. Cosmochim. Acta 55, 433440.CrossRefGoogle Scholar
Comans, R. N. J., and Hockley, D. E., (1992) Kinetics of cesium sorption on illite: Geochim. Cosmochim. Acta 56, 11571164.CrossRefGoogle Scholar
Datta, S. C., and Sastry, T. G., 1990. Hysteresis effects in K-(Ca + Mg) exchange in soils dominated by different clay minerals: J. Indian Soc. Soil Sci. 38, 201205.Google Scholar
Deist, J., and Talibudeen, O., (1967) Ion exchange in soils from the ion pairs K-Ca, K-Rb, and K-Na: J. Soil Sci. 18, 125137.CrossRefGoogle Scholar
Denbigh, K., (1981) The Principles of Chemical Equilibrium: 4th ed., Cambridge University Press, Cambridge, 494 pp.CrossRefGoogle Scholar
Dufey, J. E., and Banin, A., (1979) Particle shape and size of two sodium-calcium montmorillonite clays: Soil Sci. Soc. Am. J. 43, 782785.CrossRefGoogle Scholar
Faucher, J. A., and Thomas, H. C., (1954) Adsorption studies on clay minerals, IV. The system montmorillonite-cesium-potassium: J. Chem. Phys. 22, 258261.CrossRefGoogle Scholar
Fink, D. H., Nakayama, F. S., and McNeal, B. L., (1971) Demixing of exchangeable cations in free-swelling bentonite clay: Soil Sci. Soc. Am. Proc. 35, 552555.CrossRefGoogle Scholar
Fitzsimmons, R. F., Posner, A. M., and Quirk, J. P., (1970) Electron microscopy and kinetic study of the flocculation of calcium montmorillonite: Isr. J. Chem. 8, 301314.CrossRefGoogle Scholar
Frenkel, H., and Shainberg, I., (1981) Structure formation upon mixing Na-montmorillonite with bi- and trivalent ion-clays: J. Soil Sci. 32, 237246.CrossRefGoogle Scholar
Fripiat, J. J., Cloos, P., and Poncelet, A., (1965) Comparaison entre les propriétés d'échange de la montmorillonite et d'une résine vis-à-vis des cations alcalins et alcalino-terreux, I. Réversibilité des processus: Bull. Soc. Chim. Fr., 208215.Google Scholar
Gebhardt, H., and Rosemann, V., (1984) Cesium-und Strontium-austauscheigenschaften von Marschböden: Z. Pflanzenernaehr. Bodenkd. 147, 592603.CrossRefGoogle Scholar
Gieseking, J. E., and Jenny, H., (1936) Behavior of polyvalent cations in base exchange: Soil Sci. 42, 273280.CrossRefGoogle Scholar
Gilbert, M., (1970) Thermodynamic study of calcium manganese exchange on Camp Berteau montmorillonite: Soil Sci. 109, 2325.CrossRefGoogle Scholar
Gilbert, M., and Van Bladel, R., (1970) Thermodynamics and thermo-chemistry of the exchange reaction between NH4 and Mn in a montmorillonite clay: J. Soil Sci. 21, 3849.CrossRefGoogle Scholar
Glaeser, R., and Mering, J., (1954) Isotherms d'hydration des montmorillonites bi-ionique (Na,Ca): Clay Miner. Bull. 2, 188193.CrossRefGoogle Scholar
Goulding, K. W. T., (1984) Thermodynamics and potassium exchange in soils and clay minerals: Adv. Agron. 36, 215264.CrossRefGoogle Scholar
Greene, R. S. B., Posner, A. M., and Quirk, J. P., (1973) Factors affecting the formation of quasi-crystals of montmorillonite: Soil Sci. Soc. Amer. Proc. 37, 457460.CrossRefGoogle Scholar
Greene, R. S. B., Posner, A. M., and Quirk, J. P., (1978) A study of the coagulation of montmorillonite and illite suspensions by calcium chloride using the electron microscope: in Modification of Soil Structure, W. W. Emerson, R. D. Bond and A. R. Dexter, eds. John Wiley & Sons, New York, 3540.Google Scholar
Haines, W. B., (1930) Studies in the physical properties of soils. V. The hysteresis effect in capillary properties and the modes of moisture distribution associated therewith: J. Agric. Sci. 20, 97116.CrossRefGoogle Scholar
Hisschemöller, F. W., (1921) Les équilibres des permutites: Recl. Trav. Chim. Pays-Bas 40, 394432.CrossRefGoogle Scholar
Hurst, C. A., and Jordine, E. St. A., (1964) Role of electrostatic energy barriers in the expansion of lamellar crystals: J. Chem. Phys. 41, 27352745.CrossRefGoogle Scholar
Jordine, E. St. A., Steel, B. J., and Wolfe, J. D., (1965) Application of electrostatic models to the colloidal behavior of plate-shaped particles: Bull. Chem. Soc. Jpn. 38, 199206.CrossRefGoogle Scholar
Kelley, W. P., (1948) Cation Exchange in Soils: Reinhold, New York, 144 pp.Google Scholar
Kiekens, L., Cottenie, A., and Wijndaele, M.. 1982 () Adsorption and desorption of copper in soils: Med. Fac. Landbouww. Rijskuniv. Gent 47, 12151223.Google Scholar
Kool, J. B., and Parker, J. C., (1987) Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties: Water Resour. Res. 23, 105114.CrossRefGoogle Scholar
Laffer, B. G., Posner, A. M., and Quirk, J. P., (1966) Hysteresis in the crystalline swelling of montmorillonite: Clay Miner. 6, 311321.CrossRefGoogle Scholar
Laird, D. A., (1987) Layer Charge and Crystalline Swelling of Expanding 2: 1 Phyllosilicates: Ph.D. dissertation, Iowa State University, Ames, 289 pp.Google Scholar
Laudelout, H., (1987) Cation exchange equilibria in clays: in Chemistry of Clays and Clay Minerals, Newman, A. C. D., ed., Mineralogical Society 6, Longman Scientific Technical, Harlow, Essex, U.K., 225235.Google Scholar
Levy, R., and Francis, C. W., (1975) Demixing of sodium and calcium ions in montmorillonite crystallites: Clays & Clay Minerals 23, 574–476.CrossRefGoogle Scholar
McBride, M. B., (1989a) Reactions controlling heavy metal solubility in soils: Adv. Soil Sci. 10, 156.Google Scholar
McBride, M. B., (1989b) Surface chemistry of soil minerals: in Minerals in Soil Environments, 2nd ed., Dixon, J. B., and Weed, S. B., eds., Soil Science Society of America, Madison, Wisconsin, 3588.Google Scholar
Maes, A., and Cremers, A., (1975) Cation-exchange hysteresis in montmorillonite: A pH-dependent effect: Soil Sci. 119, 198202.CrossRefGoogle Scholar
Malcolm, R. L., and Kennedy, V. C., (1969) Rate of cation exchange on clay minerals as determined by specific ion electrode techniques: Soil Sci. Soc. Am. Proc. 33, 247253.CrossRefGoogle Scholar
Marshall, C. E., (1964) Physical Chemistry and Mineralogy of Soils. 1. Soil Materials: John Wiley, New York, 388 pp.Google Scholar
Morgun, Y. G., and Pachepskiy, Y. A., (1987) Selectivity of ion exchange sorption in CaCl2-MgCl2-NaCl-H2O-soil system: Sov. Soil Sci. 19, 110.Google Scholar
Mukherjee, S. K., (1942) Cation exchange in clay salts: Bull. Indian Soc. Soil Sci. 4, 188195.Google Scholar
Mukherjee, S. K., (1951) Cation exchange in homoionic clay salts. III. A comparative study of the base exchange equations and of the exchange isotherms in the light of exchange measurements: Bull. Indian Soc. Soil Sci. 6, 96114.Google Scholar
Newman, A. C. D., (1970) Cation exchange properties of micas. II. Hysteresis and irreversibility during potassium exchange: Clays & Clay Minerals 8, 267272.CrossRefGoogle Scholar
Norrish, K., (1954) The swelling of montmorillonite: Discuss. Faraday Soc. 18, 120134.CrossRefGoogle Scholar
Norrish, K., and Quirk, J. P., (1954) Crystalline swelling of montmorillonite: Nature 173, 225226.Google Scholar
Novich, B. E., and Ring, T. A., (1984) Colloid stability of clays using photon correlation spectroscopy: Clays & Clay Minerals 32, 400406.CrossRefGoogle Scholar
Posner, A. M., and Quirk, J. P., (1964) Changes in basal spacing of montmorillonite in electrolyte solutions: J. Colloid Sci. 19, 798812.CrossRefGoogle Scholar
Quirk, J. P., (1968) Particle interaction and soil swelling: Isr. J. Chem. 6, 213234.CrossRefGoogle Scholar
Quirk, J. P., and Aylmore, L. A. G., (1971) Domains and quasi-crystalline regions in clay systems: Soil Sci. Soc. Am. Proc. 35, 652654.CrossRefGoogle Scholar
Saha, S. K., and Sastry, T. G., (1984) Measurement of ionic activity of sodium and potassium in clay-water systems by membrane electrodes: J. Indian Soc. Soil Sci. 32, 415420.Google Scholar
Schachtschabel, P., (1940) Untersuchungen über die Sorption der Tonmineralien und organischen Bodenkolloide, und die Bestimmung des Anteils dieser Kolloide an der Sorption im Boden: Kolloid-Beih. 51, 199273.CrossRefGoogle Scholar
Schramm, L. L., and Kwak, J. C. T., (1982) Influence of exchangeable cation composition on the size and shape of montmorillonite particles in dilute suspension: Clays & Clay Minerals 20, 4048.CrossRefGoogle Scholar
Seyfried, M. S., Sparks, D. L., Bar-Tal, A., and Feigenbaum, S., (1989) Kinetics of calcium-magnesium exchange in soil using a stirred-flow reaction chamber: Soil Sci. Soc. Am. J. 53, 406410.CrossRefGoogle Scholar
Shainberg, I., and Kaiserman, A., (1969) Kinetics of the formation and breakdown of Ca-montmorillonite tactoids: Soil Sci. Soc. Am. Proc. 33, 547551.CrossRefGoogle Scholar
Shainberg, I., and Kaiserman, A., (1971) Studies on Na/Ca montmorillonite systems. 2. The hydraulic conductivity: Soil Sci. 111, 276281.CrossRefGoogle Scholar
Shainberg, I., and Otoh, H., (1968) Size and shape of montmorillonite particles saturated with Na/Ca ions (inferred from viscosity and optical measurements): Isr. J. Chem. 6, 251259.CrossRefGoogle Scholar
Shomer, I., and Mingelgrin, U., (1978) A direct procedure for determining the number of plates in tactoids of smectites: The Na/Ca-montmorillonite case: Clays & Clay Minerals 26, 135138.CrossRefGoogle Scholar
Singhal, J. P., Kahn, S., and Bansal, O. P., (1978) Studies on the thermodynamics of exchange in clays. IV. Nickel exchange on Ca-illite: J. Inorg. Nucl. Chem. 40, 15911594.CrossRefGoogle Scholar
Singhal, J. P., Singh, N., and Singh, R. P., (1977) Hysteresis and reversibility in calcium ammonium exchange in bentonite: J. Indian Chem. Soc. 54, 555559.Google Scholar
Sparks, D. L., (1989) Kinetics of Soil Chemical Processes: Academic Press, San Diego, 210 pp.Google Scholar
Sposito, G., (1981) The Thermodynamics of Soil Solutions: Oxford University Press, Oxford, 223 pp.Google Scholar
Tabikh, A. A., Barshad, I., and Overstreet, R., (1960) Cation exchange hysteresis in clay minerals: Soil Sci. 90, 219226.CrossRefGoogle Scholar
Tang, L., and Sparks, D. L., (1993) Cation-exchange kinetics on montmorillonite using pressure-jump relaxation: Soil Sci. Soc. Am. J. 57, 4246.CrossRefGoogle Scholar
Van Bladel, R., and Laudelout, H., (1967) Apparent irreversibility of ion-exchange reactions in clay suspensions: Soil Sci. 104, 134137.CrossRefGoogle Scholar
Vanselow, A. P., (1932) Equilibria of the base-exchange reactions of bentonites, soil colloids, and zeolites: Soil Sci. 33, 95113.CrossRefGoogle Scholar
Wiegner, G., (1935) Ionenumtausch und Struktur: in Trans. 3rd Int. Congr. Soil Sci. III, Oxford, 528.Google Scholar
Woods, L. C., (1985) The Thermodynamics of Fluid Systems: Clarendon, Oxford, 359 pp.Google Scholar