Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-01T18:25:06.707Z Has data issue: false hasContentIssue false

Hydrolysis of Aluminum-Tri-(Sec-Butoxide) in Ionic and Nonionic Media

Published online by Cambridge University Press:  01 July 2024

Carlos J. Serna
Affiliation:
Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
Joe L. White
Affiliation:
Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
Stanley L. Hem
Affiliation:
Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, U.S.A.

Abstract

The hydrolysis of aluminum-tri-(sec-butoxide), ASB, in ionic and nonionic media is shown to be a useful method for the synthesis of aluminum minerals. Infrared and X-ray analysis were used to identify the reaction products. Pseudoboehmite is formed at low water to aluminum ratios. At higher water content, transformation of pseudoboehmite occurs with bayerite as the final phase. Dawsonite-type minerals are produced when ASB is hydrolyzed in the presence of sodium, potassium, or ammonium bicarbonate. Infrared evidence suggests that the carbonate group is more perturbed than indicated by the proposed crystal structure. A compound with a structure like the pyoaurite-sjögrenite group was obtained when ASB reacted with a lithium carbonate solution. The infrared spectrum indicates the possible existence of bicarbonate and carbonate ions between the brucite-like layers.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

On leave from Institute de Edafologia, C.S.I.C., Madrid, Spain

References

Aldcroft, D., Bye, G. C. and Hughes, C. A. (1969) Crystallization processes in aluminum hydroxide gels IV. Factors influencing the formation of crystalline trihydroxides: J. Appl. Chem. 19, 167172.CrossRefGoogle Scholar
Angell, C. L. and Shaffer, P. C. (1965) Infrared spectroscopic investigation of zeolites and adsorbed molecules I: Structural OH groups: J. Phys. Chem. 69, 34633470.CrossRefGoogle Scholar
Bernitt, D. L., Hartman, K. O. and Hisatsune, I. E. (1965) Infrared spectra of isotopic bicarbonate monomer ions: J. Chem. Phys. 42, 35533558.CrossRefGoogle Scholar
Besson, H. Caillère, S., Hénin, S. and Prost, R. (1973) Formation experimentale et conditions de gisement de la dawsonite: Compt. Rend. 277, D, 261264.Google Scholar
Besson, H. Caillère, S. and Hénin, S. (1974) Conditions de formation de divers hydrocarbonates voisins de hydrotalcite: Bull. Groupe Fr. Argiles 26, 7989.CrossRefGoogle Scholar
Bye, G. C. and Robinson, J. G. (1961) Aging of alumina hydrates: Chem. Ind. 433.Google Scholar
Calvet, E., Boivinet, P., Noel, M., Thidon, H., Maillard, A. and Tertian, R. (1953) Contribution à l'étude des gels d'alumine: Bull. Soc. Chim. 99108.Google Scholar
Catone, D. L. and Matijevic, E. (1974) Aluminum hydrous oxide sols II. Preparation of uniform spherical particles by hydrolysis of Al sec-butoxide: J. Colloid Interface Sci. 48, 291301.CrossRefGoogle Scholar
Chesworth, W. (1971) Use of aluminum–amalgam in mineral synthesis at low temperatures and 1 atmosphere total pressure: Clays and Clay Minerals 19, 337339.CrossRefGoogle Scholar
Chesworth, W. (1972) The stability of gibbsite and boehmite at the surface of the earth: Clays and Clay Minerals 20, 369374.CrossRefGoogle Scholar
Elderfiel, H. and Hem, J. D. (1973) The development of crystalline structure in aluminum hydroxide polymorphs on aging: Mineral Mag. 39, 8996.CrossRefGoogle Scholar
Estep, P. A. and Karr, C. J. (1968) The infrared spectrum of dawsonite: Am. Miner. 53, 305309.Google Scholar
Fripiat, J. J., Bosmans, H. and Rouxhet, P. G. (1967) Proton mobility in solids I: Hydrogenic vibration modes and proton delocalization in boehmite: J. Phys. Chem. 71, 10971111.CrossRefGoogle Scholar
Frueh, A. J. and Golightly, J. P. (1967) The crystal structure of dawsonite: Can. Mineral. 9, 5156.Google Scholar
Fujita, J., Martell, A. E. and Nakamoto, K. (1962) Infrared spectra of metal chelate compounds VIII: Infrared spectra of Co(III) carbonate complex: J. Chem. Phys. 36, 339345.CrossRefGoogle Scholar
Harris, M. R. and Sing, K. S. W. (1957) The surface properties of precipitated alumina III: Samples prepared from aluminum isopropoxide: J. Appl. Chem. 8, 586589.CrossRefGoogle Scholar
Hem, S. L. and White, J. L. (1975) U.S. Pat. 3,911,090.Google Scholar
Hsu, P. H. (1967) Effect of salts on the formation of bayerite verus pseudoboehmite: Soil Sci. 103, 101110.CrossRefGoogle Scholar
Jungmann, E., Karić, K., Maričić, S. and Meić, Z. (1964) A proton magnetic resonance and infrared study in the series: aluminum hydroxide gel, pseudoboehmite, boehmite: Proc. Symp. les Bauxites, Oxydes et Hydroxides d'Aluminum, Zagreb, 1963, pp. 137141. Yugoslav Academy of Arts and Sciences.Google Scholar
Kittrick, J. A. (1969) Soil minerals in the Al2O3–SiO2–H2O system and a theory of their formation: Clays and Clay Minerals 17, 157167.CrossRefGoogle Scholar
McHardy, W. J. and Thomson, A. P. (1971) Conditions of formation of bayerite and gibbsite: Mineral Mag. 38, 358368.CrossRefGoogle Scholar
Miyata, S. (1975) The synthesis of hydrotalcite-like compounds and their structures and physico-chemical properties I: Clays and Clay Minerals 23, 369375.CrossRefGoogle Scholar
Mumpton, F. A., Jaffe, H. W. and Thompson, C. S. (1965) Coalingite, a new mineral from the new Idria serpentinite, Fresno and San Benito Counties, California: Am. Miner. 50, 18931913.Google Scholar
Nail, S. L., White, J. L. and Hem, S. L. (1976) Studies of the development of order in aluminum hydroxide gels: J. Pharm. Sci. 65, 231234.CrossRefGoogle ScholarPubMed
Papée, D., Tertian, R. and Biais, R. (1958) Recherches sur la constitution du gels et des hydrates cristallisés d'alumine: Bull. Soc. Chim. France 13011310.Google Scholar
Šarc-Lahodny, O. (1964) A contribution to the behaviour of the system Al(Hg)–H2O–dioxane: Proc. Symp. les Bauxites Oxydes et Hydroxides d'Aluminum, Zagreb, 1963, pp. 143160. Yugoslav Academy of Arts and Sciences.Google Scholar
Seiyama, T., Egashira, M., Sakamoto, F. and Kono, M. (1967) Formation and properties of dawsonite: J. Chem. Soc. Japan 70, 264268.Google Scholar
Serna, C. J., White, J. L. and Hem, S. L. (in press) Anion–aluminum hydroxide interactions: Soil Sci. Soc. Am. Proc.Google Scholar
Taylor, H. F. W. (1973) Crystal structures of some double hydroxide minerals: Mineral. Mag. 39, 377389.CrossRefGoogle Scholar
Teichner, S. J., Nicolson, G. A., Vicerini, M. A. and Gardes, G. E. E. (1976) Inorganic oxide aerogels: Adv. Colloid Interface Sci. 5, 245273.CrossRefGoogle Scholar
White, W. B. (1974) The carbonate minerals: In The Infrared Spectra of Minerals (Edited by Farmer, V. C.) . Mineralogical Society, London.Google Scholar