Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-20T05:08:18.317Z Has data issue: false hasContentIssue false

Hydrogen bonding and vibrational spectra in kaolinite-dimethylsulfoxide and -dimethylselenoxide intercalates — A solid-state computational study

Published online by Cambridge University Press:  01 January 2024

Eva Scholtzová*
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava, Slovak Republic
L’ubomír Smrčok
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava, Slovak Republic
*
* E-mail address of corresponding author: uacheva@savba.sk

Abstract

The aims of this study were to obtain accurate structural information on the dimethyl sulfoxide (DMSO) and dimethylselenoxide (DMSeO) kaolinite intercalates, paying close attention to the hydrogen-bond geometries, and to provide a detailed interpretation of the individual vibrational modes of intercalates under study and relate their energies to the formation of the hydrogen bonds. Accurate positions of all the atoms in the structures of kaolinite:dimethylsulfoxide (K:DMSO) and kaolinite:dimethylselenoxide (K:DMSeO) intercalates have been obtained by the total energy minimization in solid state at density functional theory (DFT) level of the theory. The bond distances and angles in the kaolinite 1:1 layer are in good agreement with those reported in the most recent single-crystal refinement of kaolinite. Computed geometries of DMSO and DMSeO agree well with the high-quality diffraction data and independent theoretical ab initio calculations. The organic molecules are fixed in the interlayer space mainly by three moderately strong O-H⋯O hydrogen bonds, of different strengths, with the O⋯O contact distances being within 2.739–2.932 Å (K:DMSO) and 2.681–2.849 Å (K:DMSeO). Substantially weaker C-H⋯O and O-H⋯S(Se) contacts play only a supporting role. The optimized atomic coordinates were used to calculate the individual vibrational modes between 0 and 4000 cm−1. The maximum red shifts of the OH-stretching modes caused by the formation of the O-H⋯O hydrogen bonds were 407 cm−1 (K-DMSO) and 537 cm−1 (K-DMeSO), respectively. The Al-O-H bending modes are spread over the large interval of 100–1200 cm−1, but the dominant contributions are concentrated between 800 and 1200 cm−1. Theoretically calculated energies of the OH- and CH-stretching modes show good agreement with the previously published figures obtained from the infrared and Raman spectra of these intercalates.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balan, E. Marco Saitta, A. Mauri, F. and Calas, G., 2001 First-principles modelling of the infrared spectrum of kaolinite American Mineralogist 86 13211330 10.2138/am-2001-11-1201.CrossRefGoogle Scholar
Balan, E. Marco Saitta, A. Mauri, F. Lemaire, C. and Guyot, F., 2002 First-principles calculations of the infrared spectrum of lizardite American Mineralogist 87 12861290 10.2138/am-2002-1003.CrossRefGoogle Scholar
Blöchl, P.E., 1994 Projector augmented-wave method Physical Review B 50 1795317979 10.1103/PhysRevB.50.17953.CrossRefGoogle ScholarPubMed
Brandenburg, K., 2006 Diamond.. Version 3.1d Bonn, Germany Crystal Impact GbR.Google Scholar
Bylander, D.M. Kleinman, L. and Lee, S., 1990 Self-consistent calculations of the energy bands and bonding properties of B-12(C-3) Physical Review B 42 13941403 10.1103/PhysRevB.42.1394.CrossRefGoogle Scholar
Castellano, R.K., 2004 Progress toward understanding the nature and function of C-H⋯O interactions Current Organic Chemistry 8 845865 10.2174/1385272043370384.CrossRefGoogle Scholar
Ceccarelli, C. Jeffrey, G.A. and Taylor, R., 1981 A survey of O-H⋯O hydrogen bonds geometries determined by neutron diffraction Journal of Molecular Structure 70 255271 10.1016/0022-2860(81)80112-3.CrossRefGoogle Scholar
Desiraju, G.R., 1991 The C-H⋯O hydrogen bond in crystals: what is it? Accounts of Chemical Research 24 290296 10.1021/ar00010a002.CrossRefGoogle Scholar
Dobado, J.A. Martinez-Garcia, H. Molina, J.M. and Sundberg, M.R., 1999 Chemical bonding in hypervalent molecules revised. 2. Application of the atoms in molecules theory to Y2XZ and Y2XZ2 (Y=H, F, CH3; X=O, S, Se; Z=O,S) compounds Journal of the American Chemical Society 121 31563164 10.1021/ja9828206.CrossRefGoogle Scholar
Fang, Q. Huang, S. and Wang, W., 2005 Intercalation of dimethysulfoxide in kaolinite: molecular dynamics study Chemical Physics Letters 411 233237 10.1016/j.cplett.2005.06.052.CrossRefGoogle Scholar
Filatov, A.S. Block, E. and Petrukhina, M.A., 2005 Dimethyl selenoxide Acta Crystallographica C61 596598.Google Scholar
Frost, R.L. Kristof, J. Horvath, E. and Kloprogge, J.T., 2000 Kaolinite hydroxyls in dimethylsulfoxide-intercalated kaolinites at 77K — a Raman spectroscopic study Clay Minerals 35 443454 10.1180/000985500546792.CrossRefGoogle Scholar
Gu, Y. Kar, T. and Scheiner, S., 1999 Fundamental properties of the C-H⋯O interaction: is it a true hydrogen bond? Journal of the American Chemical Society 121 94119422 10.1021/ja991795g.CrossRefGoogle Scholar
Hafner, J., 2003 Vibrational spectroscopy using ab initio density-functional techniques Journal of Molecular Structure 651–653 317 10.1016/S0022-2860(02)00624-5.CrossRefGoogle Scholar
Hayashi, S., 1995 NMR study of dynamics of dimethyl sulfoxide molecules in kaolinite/dimethyl sulfoxide intercalation compounds Journal of Physical Chemistry 99 71207129 10.1021/j100018a053.CrossRefGoogle Scholar
Hayashi, S., 1997 NMR study of dynamics and evolution of guest molecules in kaolinite/dimethyl sulfoxide intercalation compounds Clays and Clay Minerals 45 724732 10.1346/CCMN.1997.0450511.CrossRefGoogle Scholar
Hobbs, J.D. Cygan, R.T. Nagy, K.L. Schultz, P.A. and Sears, M., 1997 All-atom ab initio energy minimization of the kaolinite structure American Mineralogist 82 657662 10.2138/am-1997-7-801.CrossRefGoogle Scholar
Ibberson, R.M., 2005 Neutron powder diffraction studies of dimethyl sulfoxide Acta Crystallographica C61 571573.Google Scholar
Johnston, C.T. Sposito, G. Bocian, D.F. and Birge, R.R., 1984 Vibrational spectroscopic study of the interlamellar kaolinite-dimethylsulfoxide complex Journal of Physical Chemistry 88 59595964 10.1021/j150668a043.CrossRefGoogle Scholar
Kirkpatrick, R.J. Kalinchev, A.G. Wang, J. Hou, X. Amonette, J. and Kloprogge, J.T., 2005 Molecular modeling of the vibrational spectra of interlayer and surface species of layered double hydroxides The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides Aurora, CO, USA The Clay Minerals Society 239285.Google Scholar
Kresse, G. and Furthmüller, J., 1996 Efficient iterative scheme for ab initio total energy calculations using a plane-wave basis set Physical Review B 54 1116911186 10.1103/PhysRevB.54.11169.CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmüller, J., 1996 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Computational Materials Science 6 1550 10.1016/0927-0256(96)00008-0.CrossRefGoogle Scholar
Kresse, G. and Hafner, J., 1993 Ab initio molecular dynamics for open-shell transition metals Physical Review B 48 1311513118 10.1103/PhysRevB.48.13115.CrossRefGoogle ScholarPubMed
Kresse, G. and Hafner, J., 1994 Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements Journal of Physics: Condensed Matter 6 82458527.Google Scholar
Kresse, G. and Joubert, J., 1999 From ultrasoft potentials to the projector augmented wave method Physical Review B 59 17581775 10.1103/PhysRevB.59.1758.CrossRefGoogle Scholar
Martens, W.N. Frost, R.L. Kristof, J. and Horvath, E., 2002 Modification of kaolinite surfaces through intercalation with deuterated dimethylsulfoxide Journal of Physical Chemistry B106 41624171 10.1021/jp0130113.CrossRefGoogle Scholar
Michalková, A. and Tunega, D., 2007 Kaolinite, dimethylsulfoxide intercalate — a theoretical study Journal of Physical Chemistry C111 1125911266.Google Scholar
Neder, R.B. Burghammer, M. Grasl, T.h. Schulz, H. Bram, A. and Fiedler, S., 1999 Refinement of the kaolinite structure from single crystal synchrotron data Clays and Clay Minerals 47 487494 10.1346/CCMN.1999.0470411.CrossRefGoogle Scholar
Olejnik, S. Aylmore, L.A.G. Posner, A.M. and Quirk, J.P., 1968 Infrared spectra of kaolin mineral-dimethylsulfoxide complexes The Journal of Physical Chemistry 72 241249 10.1021/j100847a045.CrossRefGoogle Scholar
Olejnik, S. Posner, A.M. and Quirk, J.P., 1970 The intercalation of polar organic compounds into kaolinite Clay Minerals 8 421434 10.1180/claymin.1970.008.4.05.CrossRefGoogle Scholar
Perdew, J.P. and Wang, Y., 1992 Accurate and simple analytic representation of the electron-gas correlation energy Physical Review B45 1324413249 10.1103/PhysRevB.45.13244.CrossRefGoogle Scholar
Perdew, J.P. and Zunger, A., 1981 Self-interaction correction to density-functional approximations for many-electron systems Physical Review B23 50485079 10.1103/PhysRevB.23.5048.CrossRefGoogle Scholar
Portmann, S. and Luthi, H.P., 2000 MOLEKEL: an interactive molecular graphics tool Chimia 54 766769.CrossRefGoogle Scholar
Raupach, M. Barron, P.F. and Thompson, J.G., 1987 Nuclear magnetic resonance, infrared, and X-ray powder diffraction study of dimethylsulfoxide and dimethylselenoxide intercalates with kaolinite Clays and Clay Minerals 35 208219 10.1346/CCMN.1987.0350307.CrossRefGoogle Scholar
Renault, E. and Le Questel, J.-Y., 2004 Selenoxides are better hydrogen-bond acceptors than sulfoxides: a crystallographic database and theoretical investigation Journal of Physical Chemistry A108 72327240 10.1021/jp0482870.CrossRefGoogle Scholar
Smrčok, L., 1995 A comparison of powder diffraction studies of kaolin group minerals Zeitschrift fûr Kristallographie 210 177183 10.1524/zkri.1995.210.3.177.Google Scholar
Spek, A.L., 2002 PLATON. A Multipurpose Crystallographic Tool The Netherlands Utrecht University.Google Scholar
Steiner, T., 1998 Lengthening of the covalent X—H bond in heteronuclear hydrogen bonds quantified from organic and organometalic neutron crystal structures Journal of Physical Chemistry A102 70417052 10.1021/jp981604g.CrossRefGoogle Scholar
Steiner, T., 2002 The hydrogen bond in the solid state Angewandte Chemie — International Edition 41 4876 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Teter, M.P. Payne, M.C. and Allan, D.C., 1989 Solution of Schrodinger’s equations for large systems Physical Review B40 1225512263 10.1103/PhysRevB.40.12255.CrossRefGoogle Scholar
Thompson, J.G. and Cuff, C., 1985 Crystal structure of kaolinite:dimethylsulfoxide intercalate Clays and Clay Minerals 11 490500 10.1346/CCMN.1985.0330603.CrossRefGoogle Scholar