Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T06:00:00.521Z Has data issue: false hasContentIssue false

Genesis of the Yarikçi Hydrothermal Clay Deposit Within the Mesozoic Metamorphic Units, Mihaliççik, Eskişehir, Turkey

Published online by Cambridge University Press:  01 January 2024

Selahattİn Kadİr*
Affiliation:
Department of Geological Engineering, Eskişehir Osmangazi University, TR-26480, Eskişehir, Turkey
Hülya Erkoyun
Affiliation:
Department of Geological Engineering, Eskişehir Osmangazi University, TR-26480, Eskişehir, Turkey
Tacİt Külah
Affiliation:
Department of Geological Engineering, Kütahya Dumlupınar University, TR-43100, Kütahya, Turkey
*
*E-mail address of corresponding author: skadir.icc@gmail.com

Abstract

Hydrothermal alteration led to development of the Yarıkçı clay deposit within the Mesozoic chlorite-, muscovite-, chlorite-muscovite-schist, and garnet-graphite phyllite units along NW–SE- and N–S-trending faults in Mihalıççık in western central Anatolia. The geological, mineralogical, and geochemical characteristics and genesis of this economically important clay deposit have not been examined in detail previously. The present study has attempted to fill this gap. Green smectitic and cream kaolinitic claystones are abundant with smaller amounts of gray illite, dark brown Fe oxides, and silica phases occurring as stockwork/fracture infill and stain/coating. These units are covered by a dark, hard, sharp-edged, and thick silica cap. Metamorphic units exhibit cataclastic texture due to tectonic activities. Muscovite is mostly degraded to kaolinite, and feldspars show sericitization and argillization. Kaolinite typically has a platy form with irregular margins and locally sub-rounded, book-like texture suggesting hydrolysis during the hydrothermal injections. The association of Fe oxides, cristobalite/tridymite/quartz, gypsum/anhydrite, and jarosite are indicative of intense hydrothermal activities and development of kaolinite under acidic geochemical conditions. The local enrichment of SiO2, Fe2O3, S, Cu, and Au also supports this suggestion. The leaching of Sr, Rb, Ba, and Zr, and the slight increase in LREE/MREE+HREE ratios together with the negative Eu and Ce anomalies suggest the selective dissolution of muscovite, garnet, feldspar, and pyroxene by the hydrothermal fluids. Thus, abundant claystones of smectite and kaolinite were formed via the increase in Al+Fe+Mg/Si and Al±Fe/Si ratios in the alkaline and acidic environment, respectively, under the tectonic control of hydrothermal activity as seen in the alteration of chlorite, muscovite, and feldspar in metamorphic units.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acarlioğlu, S., Kadir, S., Abdioğlu, E., & Arslan, M. (2013). Epithermal-alteration geology, mineralogy and geochemistry of Eocene volcanic rocks in the Hasandağ (Giresun) area, eastern Pontides, NE Turkey. Neues Jahrbuch für Mineralogie Abhandlungen, 190, 7999.CrossRefGoogle Scholar
Akbulut, M., Pişkin, Ö., & Karayiğit, A. $ID. (2006). The genesis of the carbonatized and silicified ultramafics known as listvenites: a case study from the Mihallιççik region (Eskişehir), NW Turkey. Geological Journal, 41, 557580.CrossRefGoogle Scholar
Aliyari, F., Rastad, E., Goldfarb, R. J., & Sharif, J. A. (2014). Geochemistry of hydrothermal alteration at the Qolqoleh gold deposit, northern Sanandaj–Sirjan metamorphic belt, northwestern Iran: Vectors to high-grade ore bodies. Journal of Geochemical Exploration, 140, 111125.CrossRefGoogle Scholar
Aydnçakιr, E., & Şen, C. (2013). Petrogenesis of the post-collisional volcanic rocks from the Borçka (Artvin) area: Implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos, 172–173, 98117.CrossRefGoogle Scholar
Barrett, TJ. & MacLean, W.H. (1994). Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstones and younger volcanic rocks. Pp. 433467 in: Alteration and alteration processes associated with ore-forming systems. (Lentz, D.R., editor). Geological Association of Canada Short Course Notes 11, NL, St Johns, Nova Scotia, Canada.Google Scholar
Barrett, T. J., & MacLean, W. H. (1999). Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems. Reviews in Economic Geology, 8, 101131.Google Scholar
Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 3755.CrossRefGoogle Scholar
Bea, F., Montero, P., & Ortega, M. (2006). A LA–ICP–MS evaluation of Zr reservoirs in common crustal rocks: Implications for Zr and Hf geochemistry, and zircon-forming processes. The Canadian Mineralogist, 44, 693714.CrossRefGoogle Scholar
Bhattacharya, S., Mitra, S., Gupta, S., Jain, N., Chauhan, P., Parthasarathy, G., & Ajai, . (2016). Jarosite occurrence in the Deccan Volcanic Province of Kachchh, western India: Spectroscopic studies on a Martian analog locality. Journal of Geophysical Research: Planets, 121, 402431.CrossRefGoogle Scholar
Boulais, P., Valley, J. M., Choux, J. E., Fourcade, S., & Martineau, F. (2000). Origin of kaolinization in Brittany (NW France) with emphasis on deposits over granite: stable isotopes (O, H) constraints. Chemical Geology, 168, 211223.CrossRefGoogle Scholar
Boyraz, S. (2004). Mülk-Demirci yöresi (Eskişehir-Sivrihisar) Neojen (Üst Miyosen-Pliyosen) birimlerinin kil mineralojisi. Ankara Üniversitesi, Fen Bilimleri Ensitüsü, Yüksek Lisans Tezi, Ankara (Unpublished).Google Scholar
Brindley, GW. (1980). Quantitative X-ray analysis of clays. Pp. 411438 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. and Brown, G., editors). Mineralogical Society Monograph 5, London.CrossRefGoogle Scholar
Çelik Karakaya, M., Karakaya, N., Küpeli, Ş., & Yavuz, F. (2012). Mineralogy and geochemical behavior of trace elements of hydrothermal alteration types in the volcanogenic massive sulfide deposits, NE Turkey. Ore Geology Reviews, 48, 197224.CrossRefGoogle Scholar
Chen, C., Barcellos, D., Richter, D. D., Schroeder, P. A., & Thompson, A. (2018). Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity. Journal of Soils and Sediments, 19, 785797.CrossRefGoogle Scholar
Craw, D., Upton, P., & Mackenzie, D. J. (2009). Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand. New Zealand Journal of Geology and Geophysics, 52, 1126.CrossRefGoogle Scholar
Davis, P. B., & Whitney, D. L. (2006). Petrogenesis of lawsonite and epidote eclogite and blueschist, Sivrihisar Massif, Turkey. Journal of Metamorphic Geology, 24, 823849.CrossRefGoogle Scholar
Degeling, H., Eggins, S., & Ellis, D. J. (2001). Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineralogical Magazine, 65, 749758.CrossRefGoogle Scholar
Dill, H. G., Bosse, H.-R., Henning, K.-H., Fricke, A., & Ahrendt, H. (1997). Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt of the Central Andes of northwestern Peru. Mineralium Deposita, 32, 149163.CrossRefGoogle Scholar
Dutrizac, J. E., & Jambor, J. L. (2000). Jarosites and their application in hydrometallurgy. C. N. Alpers, J. L. Jambor, & D. K. Nordstrom (Eds.), Sulfate minerals - crystallography, geochemistry, and environmental significance (pp. 405452). Reviews in Mineralogy, 40. Chantilly: Mineralogical Society of America.Google Scholar
Ece, Ö.I., & Schroeder, P. A. (2007). Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balikesir, Turkey. Clays and Clay Minerals, 55, 1835.CrossRefGoogle Scholar
Ece, Ö.I., Schroeder, P. A., Smilley, M. J., & Wampler, J. M. (2008). Acid-sulphate alteration of andesitic tuffs and genesis of halloysite and alunite deposits in the Biga Peninsula, Turkey. Clay Minerals, 43, 281315.CrossRefGoogle Scholar
Eren, M., & Kadir, S. (2013). Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydιncιk (Mersin), southern Turkey. Turkish Journal of Earth Sciences, 22, 563573.Google Scholar
Eren, M., Kadir, S., Kapur, S., Huggett, J., & Zucca, C. (2015). Colour origin of Tortonian red mudstones within the Mersin area, southern Turkey. Sedimentary Geology, 318, 1019.CrossRefGoogle Scholar
Erhenberg, S. N. (1991). Kaolinized, potassium-leached zones at the contacts of the Garn Formation, Haltenbanken, mid-Norwegian continental shelf. Marine and Petroleum Geology, 8, 250269.CrossRefGoogle Scholar
Erkoyun, H., & Kadir, S. (2011). Mineralogy, micromorphology, geochemistry and genesis of a hydrothermal kaolinite deposit and altered Miocene host volcanites in the Hallaçlar area, Uşak, western Turkey. Clay Minerals, 46, 421448.CrossRefGoogle Scholar
Exley, C. S. (1976). Observations on the formation of kaolinite in the St. Austell Granite, Cornwall. Clay Minerals, 11, 5163.CrossRefGoogle Scholar
Fraser, G., Ellis, D., & Eggins, S. (1997). Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology, 25, 607610.2.3.CO;2>CrossRefGoogle Scholar
Fujii, N., Kayabak, $ID., & Saka, A.H. (1995). Data Book of Ceramic Raw Materials of Selected Areas in Turkey. Monography Series No.1, General Directorate of Mineral Research and Exploration, 144 p.Google Scholar
Fulignati, P., Gioncada, A., & Sbrana, A. (1999). Rare-earth element (REE) behaviour in the alteration facies of the active magmatichydrothermal system of Vulcano (Aeolian Islands, Italy). Journal of Volcanology and Geothermal Research, 88, 325342.CrossRefGoogle Scholar
Georgieva, S., & Velinova, N. (2012). Alunite from the advanced argillic alterations in the Chelopech high sulphidation epithermal Cu-Au deposit, Bulgaria: Chemistry, morphology and genetic significance. Bulletin of Mineralogy Petrology and Geochemistry, 49, 1731.Google Scholar
Ghanem, H., & Jarrar, G. H. (2013). Geochemistry andpetrogenesis of the 595 Ma shoshonitic Qunai monzogabbro, Jordan. Journal of African Earth Sciences, 88, 114.CrossRefGoogle Scholar
Gifkins, C., Herrmann, W., & Large, R. (2005). Altered volcanic rocks: A guide to description and interpretation: Australia. Centre for Ore Deposits and Exploration Studies, University of Tasmania, 275 pp.Google Scholar
Gözler, M.Z., Cevher, F., Ergül, E., & Asutay, H.J. (1996). Orta Sakarya ve güneyinin jeolojisi, Mineral Research and Exploration (MTA) Report No. 9973 (Unpublished).Google Scholar
Grant, J. A. (1986). The isocon diagram – a simple solution to Gresens' equation for metasomatic alteration. Economic Geology, 81, 19761982.CrossRefGoogle Scholar
Grant, J. A. (2005). Isocon analysis: A brief review of the method and applications. Physics and Chemistry of the Earth, 30, 9971004.CrossRefGoogle Scholar
Gürsu, S., Göncüoglu, M. C., & Bayhan, H. (2004). Geology and geochemistry of the Pre-early Cambrian rocks in the Sandikli area: implications for the Pan-African evolution NW Gondwanaland. Gondwana Research, 7, 923935.CrossRefGoogle Scholar
Haines, S. H., & van der Pluijm, B. A. (2012). Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA. Journal of Structural Geology, 43, 232.CrossRefGoogle Scholar
Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319322.CrossRefGoogle Scholar
Hellman, P. L., Smith, R. E., & Henderson, P. (1979). Rare element investigation of the Cliefden outcrop, N.S.W., Australia. Contributions to Mineralogy and Petrology, 65, 155164.CrossRefGoogle Scholar
Inoue, A. (1995). Formation of clay minerals in hydrothermal environments. Pp. 268329 in: Origin and Mineralogy of Clays: Clays and the Environment (Velde, B., editor). Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Jele, N.L. (2013). The genesis of the quartz-sericite schists of the Toggekry Formation, Nondweni greenstone Belt, South Africa. School of Agricultural, Earth and Environmental Sciences, MSc thesis, University of KwaZulu-Natal, Durban, 159 pp.Google Scholar
Kadir, S., & Akbulut, A. (2009). Mneralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey. Clay Minerals, 44, 89112.CrossRefGoogle Scholar
Kadir, S., & Erkoyun, H. (2012). Genesis of the hydrothermal Karaçayιr kaolinite deposit in Miocene volcanics and Palaeozoic metamorphic rocks of the Uşak-Güre basin, Western Turkey. Turkish Journal of Earth Sciences, 21, 126.Google Scholar
Kadir, S., & Erkoyun, H. (2015). Characterization and distribution of fibrous tremolite and chrysotile minerals in the Eskişehir region of western Turkey. Clay Minerals, 50, 441458.CrossRefGoogle Scholar
Kadir, S., Erman, H., & Erkoyun, H. (2011). Mineralogical and geochemical characteristics and genesis of hydrothermal kaolinite deposits within Neogene volcanites, Kütahya (western Anatolia), Turkey. Clays and Clay Minerals, 59, 250276.CrossRefGoogle Scholar
Kadir, S., Külah, T., Eren, M., Önalgil, N., & Gürel, A. (2014). Mineralogical and geochemical characteristics and genesis of the Güzelyurt alunite–bearing kaolinite deposit within the Late Miocene Gördeles ignimbrite, central Anatolia, Turkey. Clays and Clay Minerals, 62, 477499.CrossRefGoogle Scholar
Kadir, S., Aydoğan, M. S., Elitok, Ö., & Helvacι, C. (2015). Composition and genesis of the nickel-chrome-bearing nontronite and montmorillonite in lateritized ultramafic rocks in the Muratdagi region (Uşak, western Anatolia), Turkey. Clays and Clay Minerals, 63, 163184.CrossRefGoogle Scholar
Kadir, S., Eren, M., $IDrkeç, T., Erkoyun, H., Külah, T., Önalgil, N., & Huggett, J. (2017). An approach to genesis of sepiolite and palygorskite in lacustrine sediments of the Lower Pliocene Sakarya and Porsuk Formations in the Sivrihisar and Yunusemre-Biçer regions (Eskişehir), Turkey. Clays and Clay Minerals, 65, 310328.CrossRefGoogle Scholar
Kämpf, N., Scheinost, A.C., & Schulze, D.G. (2000). Oxide Minerals. Pp. 125168 in: Handbook of Soil Science (Sumner, M.E., editor). Boca Raton, Florida.Google Scholar
Karakaş, Z., Karakaş, Ö., & Varol, B. (2007). Sazak-Biçer (Sivrihisar KD'su) civarι Neojen (Miyosen-Pliyosen) göl basenindeki kiltaşlarιnιn mineralojik incelemesi. Türkiye Jeoloji Bülteni, 50, 5769.Google Scholar
Karpov, G. A., Schroeder, P. A., & Nikolaeva, A. G. (2018). Geochemistry of rare elements in thermal waters of Uzon-Geyzernaya hydrothermal system (Kamchatka). Russian Geology and Geophyscics, 59, 925934.CrossRefGoogle Scholar
Keller, W. D. (1976). Scan electron micrographs of kaolins collected from diverse origin-III. influence of parent material on flint clays and flint-like clays. Clays and Clay Minerals, 24, 262264.CrossRefGoogle Scholar
Koçak, A. (1975). Mihalιççιk Yarιkçι kaplιcasι hidrojeolojik etüdü. MTA Report No. 5818, Ankara.Google Scholar
Külah, T., Kadir, S., Gürel, A., Eren, M., & Önalgil, N. (2014). Mineralogy, geochemistry, and genesis of mudstones in the upper Miocene Mustafapaşa member of the Ürgüp formation in the Cappadocia region, central Anatolia, Turkey. Clays and Clay Minerals, 62, 267285.CrossRefGoogle Scholar
Kulaksιz, S. (1981). Sivrihisar KB sιnιn jeolojisi. Hacettepe Üniversitesi Yerbilimleri Dergisi, 8, 103124.Google Scholar
Kunze, GW. & Dixon, J.B. (1986). Pretreatment for mineralogical analysis. Pp. 91100 in: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (2nd edition) (Klute, A., editor). American Society of Agronomy, Inc. and The Soil Science Society of America, Inc., Madison, Wisconsin, USA.Google Scholar
Lee, R.G., Dilles, J.H., Mazdab, F.K., & Wooden, J.L. (2009). Europium anomalies in zircon from granodiorite porphyry intrusions at the El Salvador porphyry copper deposit, Chile. The Geological Society of America, paper no 158–8.Google Scholar
Lerouge, C., Kunov, A., Fléhoc, C., Georgieva, S., Hikov, A., Lescuyer, J. L., Petrunov, R., & Veliova, N. (2006). Constraints of stable isotopes on the origin of alunite from advanced argillic alteration systems in Bulgaria. Journal of Geochemical Exploration, 90, 166182.CrossRefGoogle Scholar
López-Moro, F. J. (2012). EASYGRESGRANT – A Microsoft Excel spreadsheet to quantify volume changes and to perform massbalance modeling in metasomatic systems. Computers and Geosciences, 39, 191196.CrossRefGoogle Scholar
MacLean, W. H., & Barrett, T. J. (1993). Lithogeochemical techniques using immobile elements. Journal of Geochemical Exploration, 48, 109133.CrossRefGoogle Scholar
Maulana, A., Christy, A. G., Ellis, D. J., & Bröcker, M. (2019). The distinctive tectonic and metamorphic history of the Barru Block, South Sulawesi, Indonesia: Petrological, geochemical and geochronological evidence. Journal of Asian Earth Sciences, 172, 170189.CrossRefGoogle Scholar
McFarlane, C. R. M., Mavrogenes, J. A., & Tomkins, A. G. (2007). Recognizing hydrothermal alteration through a granulite facies metamorphic overprint at the challenger Au deposit, South Australia. Chemical Geology, 243, 6489.CrossRefGoogle Scholar
Meunier, A. (1995). Hydrothermal alteration by veins. In Velde, B. (Ed.), Origin and mineralogy of clays: clays and the environment (pp. 247267). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Meunier, A. (2005). Clays. Berlin, Heidelberg: Springer Verlag.Google Scholar
Meunier, A., & Velde, B. (2004). Illite, Origin, Evolution and Metamorphism. Springer-Verlag (p. 286). Berlin, Heidelberg: New York.Google Scholar
Mongelli, G. (1997). Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chemical Geology, 140, 6979.CrossRefGoogle Scholar
Moore, D. M., & Reynolds, R. C. (1989). X-ray Diffraction and the Identification and Analysis of Clay Minerals. New York: Oxford University Press.Google Scholar
Mutlu, H., Sariz, K., & Kadir, S. (2006). Geochemistry and origin of the Şaphane alunite deposit, western Anatolia, Turkey. Ore Geology Review, 26, 3950.CrossRefGoogle Scholar
Nagasawa, K. (1978). Kaolin minerals. Pp. 189219 in: Clays and Clay Minerals of Japan (Sudo, T. and Shimoda, S., editors). Developments in Sedimentology, 26, Elsevier, Tokyo.CrossRefGoogle Scholar
Neal, C. R., & Taylor, L. A. (1989). A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism? Geochimica et Cosmochimica Acta, 53, 10351040.CrossRefGoogle Scholar
Okay, A. I. (1989). Alpine-Himalayan blueschists. Annual Reviews of the Earth and Planetary Sciences, 17, 5587.CrossRefGoogle Scholar
Okay, A. I., Tansel, $ID, & Tüysüz, O. (2001). Obduction, subduction and collision as reflected in the Upper Cretaceous–Lower Eocene sedimentary record of western Turkey. Geological Magazine, 138, 117142.CrossRefGoogle Scholar
Ömeroğlu Sayιt, I., Günal Türkmenoğlu, A., Sayn, Ş. A., & Demirci, C. (2018). Hydrothermal alteration products in the vicinity of the Ahιrözü kaolin deposits, Mihalιççιk-Eskişehir, Turkey. Clay Minerals, 53, 289303.CrossRefGoogle Scholar
Parry, W. T., Ballantyne, J. M., & Jacobs, D. C. (1984). Geochemistry of hydrothermal sericite from Roosevelt hot springs and the Tintic and Santa Rita porphyry copper systems. Economic Geology, 79, 7286.CrossRefGoogle Scholar
Planavsky, N., Rouxel, O., Bekker, A., Shapiro, R., Fralick, P., & Knudsen, A. (2009). Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters, 286, 230242.CrossRefGoogle Scholar
Santamarina, J.C., Klein, K.A., Palomino, A., & Guimaraes, M.S. (2002). Micro-scale aspects of chemical-mechanical coupling – interparticle forces and fabric. Pp. 4764 in: Chemical Behaviour: Chemo-Mechanical Coupling from nano-Structure to Engineering Applications (Maio, C. Di, Hueckel, T., and Loret, B., editors). Maratea, Balkema, Rotterdam, The Netherlands.Google Scholar
Sayιn, S. A. (2007). Origin of kaolin deposits: Evidence from the Hisarcιk (Emet-Kütahya) deposits, western Turkey. Turkish Journal of Earth Sciences, 16, 7796.Google Scholar
Sayιn, Ş. A. (2016). Quartz-mica schist and gneiss hosted clay deposits within the Yenipazar (Yozgat, Central Anatolia) volcanogenic massive sulfide ore. Turkish Journal of Earth Sciences, 25, 81101.CrossRefGoogle Scholar
Schwertmann, U. (1993). Relation between iron oxides, soil color, and soil formation. Pp. 5169 in: Soil Color (Bigham, J.M. and Ciolkosz, E.J., editors). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Şengör, A. M. C., & Yιlmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181241.CrossRefGoogle Scholar
Şengör, A.M.C., Görür, N., & Şaroglu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Pp. 227–264 in: Strike-Slip Deformation, Basin Formation and Sedimentation (Biddle, K.T., & Christie-Blick, N. editors). Society of Economic Paleontologists and Mineralogists (SEPM) Special Publication, 37.Google Scholar
Serna, E. (2014). Geochemistry and Genesis of Late Paleoproterozoic Banded Iron Formations and Metamorphosed Chemical Precipitates Spatially Associated with Pb-Zn Broken Hill-type Mineralization near the Broken Hill Deposit, Curnamona Province, Australia. Faculty of the Department of Geological Sciences Thomas Harriot College of Arts and Sciences, MSc thesis, East Carolina University, 113p.Google Scholar
Seyhan, $ID. (1968). Mihalιççik (Eskişehir) Ahιrözü-Üçbasι ve Sazak kaolenleri hakkιnda rapor. MTA Rapor No. 3922, 40s, AnkaraGoogle Scholar
Seyhan, $ID. (1978). Türkiye kaolin yataklarι ve hidrotermal cevherler arasnda görülen ilişkiler. Jeoloji Mühendisliği Dergisi, 4, 2731 Ankara.Google Scholar
Spry, P. G., Adriana, H., Messerly, J. D., & Houk, R. S. (2007). Discrimination of metamorphic and metasomatic processes at the Broken Hill Pb-Zn-Ag deposit, Australia: rare element signatures of garnet-rich rocks. Economic Geology, 102, 471494.CrossRefGoogle Scholar
State Planning Organization of Turkey (2001). 8 Five-Year Development Plan, Mining Special Expert Commission Report, Volume 1, Industrial Sub-Commission Ceramic clays-KaolinPyrophyllite-Wollastonite-Talc Group, Ankara, 224 pp. (http://ekutup.dpt.gov.tr/madencil/sanayiha/oik622.pdf)Google Scholar
Sverjensky, D. A. (1982). Europium equilibria in aqueous solution. Earth and Planetary Science Letters, 67, 7078.CrossRefGoogle Scholar
Taillefer, A., Soliva, R., Guillou-Frottier, L., Le Goff, E., Martin, G., & Seranne, M. (2017). Fault-related controls on upward hydrothermal flow: An integrated geological study of the Têt Fault System, Eastern Pyrénées (France). Geofluids, 2017, 119.CrossRefGoogle Scholar
Taylor, S. R., & McLennan, S. M. (1985). The Continental Crust: Its Composition and Evolution. Oxford, UK: Blackwell 312 pp.Google Scholar
Velde, B. (1985). Clay minerals: A Physico-chemical explanation of their occurrence. Development of Sedimentology, 40, Elsevier, New York, 427 pp.Google Scholar
Vidal, P. (1998). Géochimie. Série geosciences. Dunod, Paris.Google Scholar
Wang, W., Tang, J., Xu, W.-L., & Wang, F. (2015). Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, northeast China: Petrogenesis and implications for the tectonic evolution of the Mongol-Okhotsk suture belt. Lithos, 218–219, 7386.CrossRefGoogle Scholar
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Wilson, M. J. (1987). A Handbook of Determinative Methods in Clay Mineralogy. New York: Blackie and Son.Google Scholar
Yalçιn, H., & Bozkaya, Ö. (2003). Sivas batιsιndaki (Yιldιzeli-Akdağ madeni) hidrotermal kaolinite ve I-S oluşumlarιnιn mineralojisi ve jeokimyasι. Türkiye Jeoloji Bülteni, 46, 123.Google Scholar
Yιlmaz, Y. (1981). Sakarya kιtasι güney kenarnin tektonik evrimi. Yerbilimleri, 1, 3352.Google Scholar
Yιlmaz, Y., Genc, Ş. C., Gürer, F., Bozcu, M., Yιlmaz, K., Karacιk, Z., Altunkaynak, Ş, & Elmas, A. (2000). When did the western Anatolian grabens begin to develop? Pp. 353384 in: Tectonics and Magmatism in Turkey and the Surrounding Area (Bozkurt, E., Winchester, JA., and Piper, J.D.A., editors). Special Publications 173, Geological Society, London.Google Scholar
Zhou, L., Zhang, Z., Li, Y., You, F., Wu, C., & Zheng, C. (2013). Geological and geochemical characteristics in the paleo-weathering crust sedimentary type REE deposits, western Guizhou, China. Journal of Asian Earth Sciences, 73, 184198.CrossRefGoogle Scholar