Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T13:26:44.171Z Has data issue: false hasContentIssue false

Functional Montmorillonite/Polymer Coatings

Published online by Cambridge University Press:  01 January 2024

Shu Qing Zhou
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China Qing Yang Institute for Industrial Minerals, You Hua, Chi Zhou, Qing Yang 242804, China Zhejiang Institute of Geology and Mineral Resource, Hangzhou 310007, China
Yu Qin Niu
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China Qing Yang Institute for Industrial Minerals, You Hua, Chi Zhou, Qing Yang 242804, China
Jia Hui Liu
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China Qing Yang Institute for Industrial Minerals, You Hua, Chi Zhou, Qing Yang 242804, China
Xi Xi Chen
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China Qing Yang Institute for Industrial Minerals, You Hua, Chi Zhou, Qing Yang 242804, China
Chun Sheng Li
Affiliation:
Zhejiang Institute of Geology and Mineral Resource, Hangzhou 310007, China
Will P. Gates
Affiliation:
Institute for Frontier Materials, Deakin University Melbourne-Burwood, Burwood, Victoria 3125, Australia
Chun Hui Zhou*
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China Qing Yang Institute for Industrial Minerals, You Hua, Chi Zhou, Qing Yang 242804, China
*

Abstract

Functional montmorillonite can be dispersed in polymer coatings and organic species and polymers can be intercalated into the interlayer space or grafted onto the surface of the functional montmorillonite. The addition of functional montmorillonite into polymer-based coatings can significantly improve anti-corrosion, refractory, super-hydrophobicity, antibacterial activity, and absorption of solar radiation by the resulting montmorillonite/polymer coatings. Montmorillonite can be functionalized for this purpose by ion exchange, intercalation, exfoliation, or combinations of these treatments. The rigid montmorillonite layers interspersed within the polymer matrix inhibit the penetration of corrosive substances, minimize the impact of high-temperature airflow, and thereby lead to strong resistance of the coating to corrosion and fire. The combination of polymers and dispersed montmorillonite nanolayers, which are modified by metal ions, metal oxides, and hydrophobic organic species, allows the resulting  composite coating to have quite a rough surface and a much smaller surface free energy so that the montmorillonite/polymer coating possesses superhydrophobicity. The interlayer space of functional montmorillonite can also host or encapsulate antibacterial substances, phase-change materials, and solar energy-absorbing materials. Moreover, it can act as a template to make these guest species exist in a more stable and ordered state. Literature surveys suggest that future work on the functional montmorillonite/polymer coatings should be targeted at the manufacture of functional montmorillonite nanolayers by finding more suitable modifiers and tuning the dispersion and funtionalities of montmorillonite in the coatings.

Type
Review
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adsul, S. H., Siva, T., Sathiyanarayanan, S., Sonawane, S. H., & Subasri, R. (2018). Aluminum pillared montmorillonite clay-based self-healing coatings for corrosion protection of magnesium alloy AZ91D. Surface and Coatings Technology, 352, 445461. https://doi.org/10.1016/j.surfcoat.2018.08.034CrossRefGoogle Scholar
Ahmad, Y. H., Tientong, J., D'Souza, N., Golden, T. D., & Mohamed, A. M. A. (2014a). Salt water corrosion resistance of electrodeposited Ni-layered silicate nanocomposite coatings from Watts' type solution. Surface and Coatings Technology, 242, 170176. https://doi.org/10.1016/j.surfcoat.2014.01.040CrossRefGoogle Scholar
Ahmad, Y. H., Tientong, J., Nar, M., D'Souza, N., Mohamed, A. M. A., & Golden, T. D. (2014b). Characterization and corrosion resistance of electrodeposited Ni–Mo–silicate platelet nanocomposite coatings. Surface and Coatings Technology, 259, 517525. https://doi.org/10.1016/j.surfcoat.2014.10.036CrossRefGoogle Scholar
Akbarinezhad, E., Ebrahimi, M., Sharif, F., & Ghanbarzadeh, A. (2014). Evaluating protection performance of zinc rich epoxy paints modified with polyaniline and polyaniline-clay nanocomposite. Progress in Organic Coatings, 77(8), 12991308. https://doi.org/10.1016/j.porgcoat.2014.04.009CrossRefGoogle Scholar
Alongi, J., & Carosio, F. (2016). All-Inorganic intumescent nanocoating containing montmorillonite nanoplatelets in ammonium polyphosphate matrix capable of preventing cotton ignition. Polymers (Basel), 8(12), 8120430. https://doi.org/10.3390/polym8120430CrossRefGoogle ScholarPubMed
Apaydin, K., Laachachi, A., Ball, V., Jimenez, M., Bourbigot, S., Toniazzo, V., & Ruch, D. (2013). Polyallylamine–montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polymer Degradation and Stability, 98(2), 627634. https://doi.org/10.1016/j.polymdegradstab.2012.11.006CrossRefGoogle Scholar
Arenas, M. A., Conde, A., & de Damborenea, J. J. (2002). Cerium: a suitable green corrosion inhibitor for tinplate. Corrosion Science, 44(3), 511520. https://doi.org/10.1016/S0010-938X(01)00053-1CrossRefGoogle Scholar
Arianpouya, N., Shishesaz, M., & Ashrafi, A. (2012). Analysis of synergistic effect of nanozinc/nanoclay additives on the corrosion performance of zinc-rich polyurethane nanocomposite coatings. Polymer Composites, 33(8), 13951402. https://doi.org/10.1002/pc.22266CrossRefGoogle Scholar
Armstrong, G., Thornton, R., Ryan, M. P., Laffir, F., Russell, R. J., Bala, T., Keely, C., & Babu, R. (2012). Formulation of epoxy–polyester powder coatings containing silver-modified nanoclays and evaluation of their antimicrobial properties. Polymer Bulletin, 68(7), 19511963. https://doi.org/10.1007/s00289-011-0695-5CrossRefGoogle Scholar
Atta, A. M., El-Mahdy, G. A., Al-Lohedan, H. A., & Ezzat, A. O. (2014). Preparation of crosslinked amphiphilic silver nanogel as thin film corrosion protective layer for steel. Molecules, 19(7), 1041010426. https://doi.org/10.3390/molecules190710410CrossRefGoogle ScholarPubMed
Atta, A. M., Al-Lohedan, H. A., El-Saeed, A. M., Al-Shafey, H. I., & Wahby, M. (2017). Salt-controlled self-healing nanogel composite embedded with epoxy as environmentally friendly organic coating. Journal of Coatings Technology and Research, 14(5), 12251236. https://doi.org/10.1007/s11998-017-9917-6CrossRefGoogle Scholar
Atta, A. M., Ezzat, A. O., El-Saeed, A. M., Wahby, M. H., & Abdallah, M. M. S. (2020). Superhydrophobic organic and inorganic clay nanocomposites for epoxy steel coatings. Progress in Organic Coatings, 140, 105502. https://doi.org/10.1016/j.porgcoat.2019.105502CrossRefGoogle Scholar
Bagherzadeh, M. R., & Mousavinejad, T. (2012). Preparation and investigation of anticorrosion properties of the water-based epoxy-clay nanocoating modified by Na+-MMT and Cloisite 30B. Progress in Organic Coatings, 74(3), 589595. https://doi.org/10.1016/j.porgcoat.2012.02.006CrossRefGoogle Scholar
Bagherzadeh, M. R., Mousavinejad, T., Akbarinezhad, E., & Ahmadi, M. (2014). Highly protective performance of water-based epoxy coating loaded with self-doped nanopolyaniline synthesized under supercritical CO2 condition. Progress in Organic Coatings, 77(11), 19771984. https://doi.org/10.1016/j.porgcoat.2014.07.017CrossRefGoogle Scholar
Bahlakeh, G., Ramezanzadeh, B., & Ramezanzadeh, M. (2018). New detailed insights on the role of a novel praseodymium nanofilm on the polymer/steel interfacial adhesion bonds in dry and wet conditions: An integrated molecular dynamics simulation and experimental study. Journal of the Taiwan Institute of Chemical Engineers, 85, 221236. https://doi.org/10.1016/j.jtice.2018.01.013CrossRefGoogle Scholar
Bayer, I. S., Steele, A., Martorana, P. J., & Loth, E. (2010). Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions. Applied Surface Science, 257(3), 823826. https://doi.org/10.1016/j.apsusc.2010.07.072CrossRefGoogle Scholar
Berta, M., Maria, S., Phan, T. N. T., Gigmes, D., Fina, A., & Camino, G. (2017). Reworkable layered silicate-epoxy nano-composites: synthesis, thermomechanical properties and combustion behaviour. Journal of Polymer Engineering, 37(1), 2130. https://doi.org/10.1515/polyeng-2015-0483CrossRefGoogle Scholar
Bodzay, B., Bocz, K., Bárkai, Z., & Marosi, G. (2011). Influence of rheological additives on char formation and fire resistance of intumescent coatings. Polymer Degradation and Stability, 96(3), 355362. https://doi.org/10.1016/j.polymdegradstab.2010.03.022CrossRefGoogle Scholar
Cadene, A., Durand-Vidal, S., Turq, P., & Brendle, J. (2005). Study of individual Na-montmorillonite particles size, morphology, and apparent charge. Journal of Colloid and Interface Science, 285(2), 719730. https://doi.org/10.1016/j.jcis.2004.12.016CrossRefGoogle ScholarPubMed
Callone, E., Ceccato, R., Deflorian, F., Fedel, M., & Dirè, S. (2017). Filler-matrix interaction in sodium montmorillonite-organosilica nanocomposite coatings for corrosion protection. Applied Clay Science, 150, 8188. https://doi.org/10.1016/j.clay.2017.09.016CrossRefGoogle Scholar
Catarina, G. A. S., Borsoi, C., Romanzini, D., Piazza, D., Kunst, S. R., Scienza, L. C., & Zattera, A. J. (2017). Development of acrylic-based powder coatings with incorporation of montmorillonite clays. Journal of Applied Polymer Science, 134(27). https://doi.org/10.1002/app.45031CrossRefGoogle Scholar
Chen, K., Ye, W., Cai, S., Huang, L., Zhong, T., Chen, L., & Wang, X. (2016). Green antimicrobial coating based on quaternised chitosan/organic montmorillonite/Ag NPs nanocomposites. Journal of Experimental Nanoscience, 11(17), 13601371. https://doi.org/10.1080/17458080.2016.1227095CrossRefGoogle Scholar
Contri, G., Barra, G. M. O., Ramoa, S. D. A. S., Merlini, C., Ecco, L. G., Souza, F. S., & Spinelli, A. (2018). Epoxy coating based on montmorillonite-polypyrrole: Electrical properties and prospective application on corrosion protection of steel. Progress in Organic Coatings, 114, 201207. https://doi.org/10.1016/j.porgcoat.2017.10.008CrossRefGoogle Scholar
Dawson, J. I., & Oreffo, R. O. (2013). Clay: new opportunities for tissue regeneration and biomaterial design. Advanced Materials, 25(30), 40694086. https://doi.org/10.1002/adma.201301034CrossRefGoogle ScholarPubMed
Deng, S. B., Liao, W., Yang, J. C., Cao, Z. J., & Wang, Y. Z. (2016). Flame-retardant and smoke-suppressed silicone foams with chitosan-based nanocoatings. Industrial & Engineering Chemistry Research, 55(27), 72397248. https://doi.org/10.1021/acs.iecr.6b00532CrossRefGoogle Scholar
Dhirde, P. G., Chada, V. G. R., Mallik, B. P., & Moitra, N. (2018). Alkyd-clay nanocomposites for improved anticorrosion. Polymer Composites, 39(8), 29222931. https://doi.org/10.1002/pc.24291CrossRefGoogle Scholar
Dong, Y. H., Ma, L. Q., & Zhou, Q. (2013). Effect of the incorporation of montmorillonite-layered double hydroxide nanoclays on the corrosion protection of epoxy coatings. Journal of Coatings Technology and Research, 10(6), 909921. https://doi.org/10.1007/s11998-013-9519-xCrossRefGoogle Scholar
Dong, Y., Wang, F., & Zhou, Q. (2014). Protective behaviors of 2-mercaptobenzothiazole intercalated Zn–Al-layered double hydroxide coating. Journal of Coatings Technology and Research, 11(5), 793803. https://doi.org/10.1007/s11998-014-9568-9CrossRefGoogle Scholar
El-Fattah, M. A., El Saeed, A. M., Dardir, M. M., & El-Sockary, M. A. (2015). Studying the effect of organo-modified nanoclay loading on the thermal stability, flame retardant, anti-corrosive and mechanical properties of polyurethane nanocomposite for surface coating. Progress in Organic Coatings, 89, 212219. https://doi.org/10.1016/j.porgcoat.2015.09.010CrossRefGoogle Scholar
Emmerich, K., Wolters, F., Kahr, G., & Lagaly, G. (2009). Clay profiling: the classification of montmorillonites. Clays and Clay Minerals, 57(1), 104114. https://doi.org/10.1346/ccmn.2009.0570110CrossRefGoogle Scholar
Fang, X., Zhang, Z., & Chen, Z. (2008). Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Conversion and Management, 49(4), 718723. https://doi.org/10.1016/j.enconman.2007.07.031CrossRefGoogle Scholar
Favero, J. d. S., Parisotto-Peterle, J., Weiss-Angeli, V., Brandalise, R. N., Gomes, L. B., Bergmann, C. P., & dos Santos, V. (2016). Physical and chemical characterization and method for the decontamination of clays for application in cosmetics. Applied Clay Science, 124–125, 252259. https://doi.org/10.1016/j.clay.2016.02.022CrossRefGoogle Scholar
Fernández, M. A., Barberia Roque, L., Gámez Espinosa, E., Deyá, C., & Bellotti, N. (2020). Organo-montmorillonite with biogenic compounds to be applied in antifungal coatings. Applied Clay Science, 184. https://doi.org/10.1016/j.clay.2019.105369CrossRefGoogle Scholar
Frelichowska, J., Bolzinger, M. A., Pelletier, J., Valour, J. P., & Chevalier, Y. (2009). Topical delivery of lipophilic drugs from o/w Pickering emulsions. International Journal of Pharmaceutics, 371(1-2), 5663. https://doi.org/10.1016/j.ijpharm.2008.12.017CrossRefGoogle ScholarPubMed
Gates, W. P., Bordallo, H. N., Bouazza, A., Carnero-Guzman, G. G., Aldridge, L. A., Klaproth, A., Iles, G. N., Booth, N., Mole, R. A., Seydel, T., Yu, D., & de Souza, N. R. (2021). Neutron scattering quantification of unfrozen pore water in frozen mud. Microporous and Mesoporous Materials, 324, 111267. https://doi.org/10.1016/j.micromeso.2021.111267CrossRefGoogle Scholar
Ghazi, A., Ghasemi, E., Mahdavian, M., Ramezanzadeh, B., & Rostami, M. (2015). The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating. Corrosion Science, 94, 207217. https://doi.org/10.1016/j.corsci.2015.02.007CrossRefGoogle Scholar
Guan, G., Li, C., Zhang, D., & Jin, Y. (2006). The effects of metallic derivatives released from montmorillonite on the thermal stability of poly(ethylene terephthalate)/montmorillonite nanocomposites. Journal of Applied Polymer Science, 101(3), 16921699. https://doi.org/10.1002/app.23318CrossRefGoogle Scholar
Guo, Y. X., Liu, J. H., Gates, W. P., & Zhou, C. H. (2021). Organo-Modification of montmorillonite. Clays and Clay Minerals, 68(6), 601622. https://doi.org/10.1007/s42860-020-00098-2CrossRefGoogle Scholar
Hang, T. T. X., Truc, T. A., Duong, N. T., Pébère, N., & Olivier, M.-G. (2012). Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel. Progress in Organic Coatings, 74(2), 343348. https://doi.org/10.1016/j.porgcoat.2011.10.020CrossRefGoogle Scholar
Hedley, C., Yuan, G., & Theng, B. (2007). Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Applied Clay Science, 35(3-4), 180188. https://doi.org/10.1016/j.clay.2006.09.005CrossRefGoogle Scholar
Ho, M., Lam, C., Lau, K., Ng, D. H. L., & Hui, D. (2006). Mechanical properties of epoxy-based composites using nanoclays. Composite Structures, 75(1-4), 415421. https://doi.org/10.1016/j.compstruct.2006.04.051CrossRefGoogle Scholar
Hosseini, M. G., Raghibi-Boroujeni, M., Ahadzadeh, I., Najjar, R., & Seyed Dorraji, M. S. (2009). Effect of polypyrrole–montmorillonite nanocomposites powder addition on corrosion performance of epoxy coatings on Al 5000. Progress in Organic Coatings, 66(3), 321327. https://doi.org/10.1016/j.porgcoat.2009.08.010CrossRefGoogle Scholar
Hosseini, M. G., Jafari, M., & Najjar, R. (2011). Effect of polyaniline–montmorillonite nanocomposite powders addition on corrosion performance of epoxy coatings on Al 5000. Surface and Coatings Technology, 206(2-3), 280286. https://doi.org/10.1016/j.surfcoat.2011.07.012CrossRefGoogle Scholar
Hu, X. C., Sun, Z., Zhu, X. J., & Sun, Z. Q. (2020). Montmorillonite-synergized water-based intumescent flame retardant coating for plywood. Coatings, 10(2), 109. https://doi.org/10.3390/coatings10020109CrossRefGoogle Scholar
Huang, Y. W., Song, S. Q., Yang, Y., Cao, K., Yang, J. X., & Chang, G. J. (2015). Decomposable double-walled hybrid nanorods: formation mechanism and their effect on flame retardancy of epoxy resin composites. Journal of Materials Chemistry A, 3(31), 1593515943. https://doi.org/10.1039/c5ta02149aCrossRefGoogle Scholar
Iconaru, S. L., Groza, A., Stan, G. E., Predoi, D., Gaiaschi, S., Trusca, R., Chifiriuc, C. M., Marutescu, L., Tite, T., Stanciu, G. A., Hristu, R., Ghegoiu, L., Badea, M. L., Turculet, C. S., Ganciu, M., & Chapon, P. (2019). Preparations of silver/montmorillonite biocomposite multilayers and their antifungal activity. Coatings, 9(12), 9120817. https://doi.org/10.3390/coatings9120817CrossRefGoogle Scholar
Izadi, M., Shahrabi, T., Mohammadi, I., & Ramezanzadeh, B. (2019). Synthesis of impregnated Na+-montmorillonite as an eco-friendly inhibitive carrier and its subsequent protective effect on silane coated mild steel. Progress in Organic Coatings, 135, 135147. https://doi.org/10.1016/j.porgcoat.2019.05.037CrossRefGoogle Scholar
Jiratumnukul, N., Pruthipaitoon, S., & Pitsaroup, T. (2006). Nanocomposite alkyd coatings. Journal of Applied Polymer Science, 102(3), 26392642. https://doi.org/10.1002/app.24056CrossRefGoogle Scholar
Kim, J. G., Lee, D. M., Jung, J. Y., Min, J. K., & Kim, N. D. (2021). Hybrid polyaniline/liquid crystalline CNT fiber composite for ultimate flexible supercapacitors. ACS Applied Energy Materials, 4(2), 11301142. https://doi.org/10.1021/acsaem.0c02217CrossRefGoogle Scholar
Laatar, F., Predeep, P., Romdhane, M. R. B., & Srasra, E. (2018). Effect of nanoclay on the corrosion protection efficiency of UP/CuEDA2-MMT nanocomposite coatings assessed by EIS measurements. Protection of Metals and Physical Chemistry of Surfaces, 54(3), 541547. https://doi.org/10.1134/s2070205118030310CrossRefGoogle Scholar
Li, S. X., Ding, J. Y., Shawgi, N., & Qi, S. (2015). Effect of organic montmorillonite on the performance of modified waterborne potassium silicate zinc-rich anti-corrosion coating. Research on Chemical Intermediates, 42(4), 35073521. https://doi.org/10.1007/s11164-015-2228-6CrossRefGoogle Scholar
Li, Z. J., Li, C. P., Li, D. X., Jiang, Y. X., & Li, Z. F. (2018). Preparation of novel organo-montmorillonite and its influence on the acid resistance of hybrid cathodic electrodeposition polyurethane coating. Journal of Coatings Technology and Research, 16(2), 597605. https://doi.org/10.1007/s11998-018-0141-9CrossRefGoogle Scholar
Lima, A. C., Jou, L. M., Barcia, O. E., & Margarit-Mattos, I. C. P. (2018). Montmorillonite as corrosion protective pigment. Corrosion Science, 141, 182194. 10.1016/j.corsci.2018.07.008.CrossRefGoogle Scholar
Ling, Y., Luo, Y., Luo, J., Wang, X., & Sun, R. (2013). Novel antibacterial paper based on quaternized carboxymethyl chitosan/organic montmorillonite/Ag NP nanocomposites. Industrial Crops and Products, 51, 470479. https://doi.org/10.1016/j.indcrop.2013.09.040CrossRefGoogle Scholar
Liu, Z. T., Dai, M. Q., Wang, C., Zhang, Q., Zhang, Y. F., Jin, B. Q., & Gao, X. (2016). Effects of the addition mode and amount of organic montmorillonite in soft-core/hard-shell emulsion on fire protection, water resistance and stability of fire retardant coating. Progress in Organic Coatings, 101, 350358. https://doi.org/10.1016/j.porgcoat.2016.09.001CrossRefGoogle Scholar
Makhlouf, G., Hassan, M., Nour, M., Abdel-Monem, Y. K., & Abdelkhalik, A. (2017). Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant. Journal of Thermal Analysis and Calorimetry, 130(2), 10311041. https://doi.org/10.1007/s10973-017-6418-xCrossRefGoogle Scholar
Meera, K. M., Sankar, R. M., Murali, A., Jaisankar, S. N., & Mandal, A. B. (2012). Sol-gel network silica/modified montmorillonite clay hybrid nanocomposites for hydrophobic surface coatings. Colloids and Surfaces B: Biointerfaces, 90, 204210. https://doi.org/10.1016/j.colsurfb.2011.10.018CrossRefGoogle ScholarPubMed
Mehrabian, N., & Sarabi Dariani, A. A. (2018). Anticorrosive performance of epoxy/modified clay nanocomposites. Polymer Composites, 39(S4), E2134–E2142. https://doi.org/10.1002/pc.24492CrossRefGoogle Scholar
Micó-Vicent, B., López-Herraiz, M., Bello, A., Martínez, N., & Martínez-Verdú, F. M. (2017a). Synthesis of pillared clays from metallic salts as pigments for thermosolar absorptive coatings. Sol. Energ., 155, 314322. https://doi.org/10.1016/j.solener.2017.06.034CrossRefGoogle Scholar
Micó-Vicent, B., López, M., Bello, A., Martínez, N., & Martínez-Verdú, F. (2017b). Optimum multilayer-graphene-montmorillonite composites from sugar for thermosolar coatings formulations. Journal of Solar Energy Engineering, 139(3). https://doi.org/10.1115/1.4035757CrossRefGoogle Scholar
Misra, N., Kumar, V., Bahadur, J., Bhattacharya, S., Mazumder, S., & Varshney, L. (2014). Layered silicate-polymer nanocomposite coatings via radiation curing process for flame retardant applications. Progress in Organic Coatings, 77(9), 14431451. https://doi.org/10.1016/j.porgcoat.2014.04.027CrossRefGoogle Scholar
Mo, Q. F., Li, W. Z., Yang, H. J., Gu, F. M., Chen, Q. Z., & Yang, R. X. (2019). Water resistance and corrosion protection properties of waterborne polyurethane coating enhanced by montmorillonite modified with Ce3+. Progress in Organic Coatings, 136, 105213. https://doi.org/10.1016/j.porgcoat.2019.105213CrossRefGoogle Scholar
Mohammadi, I., Izadi, M., Shahrabi, T., Fathi, D., & Fateh, A. (2019). Enhanced epoxy coating based on cerium loaded Namontmorillonite as active anti-corrosive nanoreservoirs for corrosion protection of mild steel: Synthesis, characterization, and electrochemical behavior. Progress in Organic Coatings, 131, 119130. https://doi.org/10.1016/j.porgcoat.2019.02.016CrossRefGoogle Scholar
Morgan, A. B., & Gilman, J. W. (2013). An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire & Materials, 37(4), 259279. https://doi.org/10.1002/fam.2128CrossRefGoogle Scholar
Navarchian, A. H., Joulazadeh, M., & Karimi, F. (2014). Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Progress in Organic Coatings, 77(2), 347353. https://doi.org/10.1016/j.porgcoat.2013.10.008CrossRefGoogle Scholar
Olad, A., Nosrati, R., Najjari, H., & Nofouzi, K. (2016). Preparation and investigation of hydrophilic, photocatalytic, and antibacterial polyacrylic latex coating containing nanostructured TiO2/Ag+-exchanged-montmorillonite composite material. Applied Clay Science, 123, 156165. https://doi.org/10.1016/j.clay.2016.01.022CrossRefGoogle Scholar
Olad, A., Rezvani, F., & Nosrati, R. (2017). Preparation and characterization of polyurethane based self-cleaning and antibacterial coating containing silver ion exchanged montmorillonite/TiO2 nanocomposite. Research on Chemical Intermediates, 44(3), 17111727. https://doi.org/10.1007/s11164-017-3193-zCrossRefGoogle Scholar
Patel, R. H., Kachhia, P. H., Patel, K. S., & Shah, M. D. (2018). Synthesis of diphosphorus-based polyurethane esters and their application in flame-retardant nanoclay coatings. Polymer Bulletin, 76(3), 11831198. https://doi.org/10.1007/s00289-018-2440-9CrossRefGoogle Scholar
Peila, R., Malucelli, G., Lazzari, M., & Priola, A. (2010). Thermomechanical and barrier properties of UV-cured epoxy/O-montmorillonite nanocomposites. Polymer Engineering & Science, 50(7), 14001407. https://doi.org/10.1002/pen.21681CrossRefGoogle Scholar
Peng, K., Fu, L., Li, X., Ouyang, J., & Yang, H. (2017). Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage. Applied Clay Science, 138, 100106. https://doi.org/10.1016/j.clay.2017.01.003CrossRefGoogle Scholar
Qu, M. G., Xue, M. G., Yuan, M. J., He, J., Abbas, A., Zhao, Y., Wang, J. X., Liu, X. R., & He, J. M. (2019). Fabrication of fluorine-free superhydrophobic coatings from montmorillonite with mechanical durability and chemical stability. Journal of Coatings Technology and Research, 16(4), 10431053. https://doi.org/10.1007/s11998-018-00179-xCrossRefGoogle Scholar
Ramôa, S. D. A. S., Barra, G. M. O., Merlini, C., Schreiner, W. H., Livi, S., & Soares, B. G. (2015). Production of montmorillonite/polypyrrole nanocomposites through in situ oxidative polymerization of pyrrole: Effect of anionic and cationic surfactants on structure and properties. Applied Clay Science, 104, 160167. https://doi.org/10.1016/j.clay.2014.11.026CrossRefGoogle Scholar
Relosi, N., Neuwald, O. A., Zattera, A. J., Piazza, D., Kunst, S. R., & Birriel, E. J. (2018). Effect of addition of clay minerals on the properties of epoxy/polyester powder coatings. Polímeros, 28(4), 355367. https://doi.org/10.1590/0104-1428.01616CrossRefGoogle Scholar
Roy, A., Joshi, M., & Butola, B. S. (2019). Preparation and antimicrobial assessment of zinc-montmorillonite intercalates based HDPE nanocomposites: A cost-effective and safe bioactive plastic. Journal of Cleaner Production, 212, 15181525. https://doi.org/10.1016/j.jclepro.2018.11.235CrossRefGoogle Scholar
Semlali Aouragh Hassani, F. Z., El Bourakadi, K., Merghoub, N., Qaiss, A. E. K., & Bouhfid, R. (2020). Effect of chitosan/modified montmorillonite coating on the antibacterial and mechanical properties of date palm fiber trays. International Journal of Biological Macromolecules, 148, 316323. https://doi.org/10.1016/j.ijbiomac.2020.01.092CrossRefGoogle Scholar
Shen, C. C., Petit, S., Li, C. J., Li, C. S., Khatoon, N., & Zhou, C. H. (2020). Interactions between smectites and polyelectrolytes. Applied Clay Science, 198, 105778. https://doi.org/10.1016/j.clay.2020.105778CrossRefGoogle Scholar
Siva, T., Rajkumar, S., Muralidharan, S., & Sathiyanarayanan, S. (2019). Bipolar properties of coatings to enhance the corrosion protection performance. Progress in Organic Coatings, 137, 105379. https://doi.org/10.1016/j.porgcoat.2019.105379CrossRefGoogle Scholar
Soares, N. F. F., Moreira, F. K. V., Fialho, T. L., & Melo, N. R. (2012). Triclosan-based antibacterial paper reinforced with nano-montmorillonite: a model nanocomposite for the development of new active packaging. Polymers for Advanced Technologies, 23(5), 901908. https://doi.org/10.1002/pat.1986CrossRefGoogle Scholar
Sohrabnezhad, S., Pourahmad, A., Mehdipour Moghaddam, M. J., & Sadeghi, A. (2015). Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite. Spectrochim Acta A Mol Biomol Spectrosc, 136, 17281733. https://doi.org/10.1016/j.saa.2014.10.074CrossRefGoogle ScholarPubMed
Spinks, G. M., Dominis, A. J., Wallace, G. G., & Tallman, D. E. (2001). Electroactive conducting polymers for corrosion control. Journal of Solid State Electrochemistry, 6(2), 85100. https://doi.org/10.1007/s100080100211CrossRefGoogle Scholar
Taha-Tijerina, J., Maldonado-Cortés, D., Peña-Parás, L., Sánchez, D., Caballero, K., & Sánchez-Fernández, J. A. (2018). Development of steel coatings reinforced with nanoclay particles for corrosion and wear protection. IOP Conference Series: Materials Science and Engineering, 400, 072006. https://doi.org/10.1088/1757-899x/400/7/072006CrossRefGoogle Scholar
Tallman, D. E., Spinks, G., Dominis, A., & Wallace, G. G. (2001). Electroactive conducting polymers for corrosion control. Journal of Solid State Electrochemistry, 6(2), 7384. https://doi.org/10.1007/s100080100212CrossRefGoogle Scholar
Tedim, J., Kuznetsova, A., Salak, A. N., Montemor, F., Snihirova, D., Pilz, M., Zheludkevich, M. L., & Ferreira, M. G. S. (2012). Zn-Al layered double hydroxides as chloride nanotraps in active protective coatings. Corrosion Science, 55, 14. https://doi.org/10.1016/j.corsci.2011.10.003CrossRefGoogle Scholar
Tomczak, M., Łopiński, J., Kowalczyk, K., Schmidt, B., & Rokicka, J. (2019). Vinyl intumescent coatings modified with platelet-type nanofillers. Progress in Organic Coatings, 126, 97105. https://doi.org/10.1016/j.porgcoat.2018.10.015CrossRefGoogle Scholar
Tomić, M. D., Dunjić, B., Likić, V., Bajat, J., Rogan, J., & Djonlagić, J. (2014). The use of nanoclay in preparation of epoxy anticorrosive coatings. Progress in Organic Coatings, 77(2), 518527. https://doi.org/10.1016/j.porgcoat.2013.11.017CrossRefGoogle Scholar
Usuki, A., Koiwai, A., Kojima, Y., Kawasumi, M., Okada, A., Kurauchi, T., & Kamigaito, O. (1995). Interaction of nylon 6-clay surface and mechanical. Journal of Applied Polymer Science, 55(1), 119123. https://doi.org/10.1002/app.1995.070550113CrossRefGoogle Scholar
Vega, J. M., Granizo, N., Simancas, J., Díaz, I., Morcillo, M., & de la Fuente, D. (2017). Exploring the corrosion inhibition of aluminium by coatings formulated with calcium exchange bentonite. Progress in Organic Coatings, 111, 273282. https://doi.org/10.1016/j.porgcoat.2017.04.046CrossRefGoogle Scholar
Wang, W., Pan, H., Shi, Y., Yu, B., Pan, Y., Liew, K. M., Song, L., & Hu, Y. (2015). Sandwichlike coating consisting of alternating montmorillonite and β-FeOOH for reducing the fire hazard of flexible polyurethane foam. ACS Sustainable Chemistry & Engineering, 3(12), 32143223. https://doi.org/10.1021/acssuschemeng.5b00805CrossRefGoogle Scholar
Yan, L., Xu, Z., & Wang, X. (2018). Synergistic effects of organically modified montmorillonite on the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings. Progress in Organic Coatings, 122, 107118. https://doi.org/10.1016/j.porgcoat.2018.05.016CrossRefGoogle Scholar
Yang, Y. H., Li, Y. C., Shields, J., & Davis, R. D. (2015). Layer double hydroxide and sodium montmorillonite multilayer coatings for the flammability reduction of flexible polyurethane foams. Journal of Applied Polymer Science, 132(14), 41767. https://doi.org/10.1002/app.41767Google Scholar
Yuan, R. X., Wu, S. Q., Wang, H. Y., Hu, L., Zhu, Y. J., Gao, S. M., Zhu, Y. X., & Zhang, X. G. (2017). Facile fabrication approach for a novel multifunctional superamphiphobic coating based on chemically grafted montmorillonite/Al2O3-polydimethylsiloxane binary nanocomposite. Journal of Polymer Research, 24(4). https://doi.org/10.1007/s10965-017-1222-7CrossRefGoogle Scholar
Zhang, Y., Shao, Y., Zhang, T., Meng, G., & Wang, F. (2013). High corrosion protection of a polyaniline/organophilic montmorillonite coating for magnesium alloys. Progress in Organic Coatings, 76(5), 804811. https://doi.org/10.1016/j.porgcoat.2013.01.008CrossRefGoogle Scholar
Zhang, Y., Deng, J., Shao, Y., Shi, Q., Meng, G., & Ping, L. (2014a). Effect of polyaniline/organophilic montmorillonite composites on properties of epoxy coating. Corrosion Reviews, 32(5-6), 227236. https://doi.org/10.1515/corrrev-2014-0025CrossRefGoogle Scholar
Zhang, Y. J., Shao, Y. W., Shi, Q. M., Wang, Y. Q., Meng, G. Z., & Li, P. (2014b). Effect of polyaniline/organophilic montmorillonite composites on properties of epoxy coating. Corrosion Reviews, 32(5-6), 227236. https://doi.org/10.1515/corrrev-2014-0025CrossRefGoogle Scholar
Zhang, Y., Shao, Y., Shi, Q., Wang, Y., Meng, G., & Li, P. (2017a). Effect of polyaniline/montmorillonite content on the corrosion protection of epoxy coating. Anti-Corrosion Methods and Materials, 64(1), 7582. https://doi.org/10.1108/acmm-03-2015-1511CrossRefGoogle Scholar
Zhang, Z. H., Zhang, D. Q., Zhu, L. H., Gao, L. X., Lin, T., & Li, W. G. (2017b). Performance enhancement of the anti-corrosion coating based on Ce3+-polyaniline–montmorillonite composite/epoxy-ester system. Journal of Coatings Technology and Research, 14(5), 10831093. https://doi.org/10.1007/s11998-016-9897-yCrossRefGoogle Scholar