Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-22T07:43:58.516Z Has data issue: false hasContentIssue false

Evolution of Benzylammonium-Vermiculite and Ornithine-Vermiculite Intercalates

Published online by Cambridge University Press:  28 February 2024

C. de la Calle
Affiliation:
CSIC. Instituto de Ciencia de Materiales c/Serrano Serrano 113, 28006 Madrid, Spain
M. I. Tejedor
Affiliation:
Water Chemistry Program, University of Wisconsin-Madison, Wisconsin 53706 (USA)
C. H. Pons
Affiliation:
Université d'Orléans, CRMD-Université (UMR 0131)-UFR Sciences, Rue de Chartres BP 6759 45064 Orléans Cedex 2, France

Abstract

This report consists of a study of l-ornithine hydrochloride-vermiculite and of benzylammonium hydrochloride-vermiculite complex. The evolution of these organo-vermiculite structures upon heating is studied by X-ray diffraction (XRD) as well as infrared spectroscopy.

After heating vermiculite saturated with 1-ornithine cations, it shows condensation of interlayer ornithine molecules (peptide complexes). The stacking mode, opposing ditrigonal cavities, is not modified between aminoacid complex and peptide complex.

For vermiculite saturated with benzylammonium cations, the stacking sequence changes through heating by changing benzylammonium to NH4+. This transformation implies a sliding of the layers over each other. The ditrigonal surface cavities become face to face, as in the original mica. There are no random translations as in the starting complex.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W.. 1985. Classification and structures of micas. In: Bailey, S.W., editor. Micas. Rev Mineral 13, Washington, D.C.: Mineral Soc Am. 113.Google Scholar
Brindley, G.W. and Gillery, F.M.. 1956. X-Ray identification of chlorite species. Am Mineral 41: 169181.Google Scholar
de la Calle, C. and Suquet, H.. 1988. Vermiculite. In: Bailey, S.W., editor. Hydrous Phyllosilicates. Rev Mineral Vol 19, Washington, D.C.: Mineral Soc Am. 455496.CrossRefGoogle Scholar
de la Calle, C., Suquet, H. and Pons, C.H.. 1988. Stacking order in a 14.30 Å Mg-vermiculite. Clays & Clay Miner 36: 481490.CrossRefGoogle Scholar
de la Calle, C., Martin de Vidales, J.L. and Pons, C.H.. 1993. Stacking order in a K/Mg interstratificatied vermiculite from Malawi. Clays & Clay Miner 41: 580589.CrossRefGoogle Scholar
Cotton, F.A. and Wilkinson, G.. 1988. Advanced in Inorganic Chemistry, 5th ed. New York: Wiley Interscience. 1455p.Google Scholar
Fornes, V., Rausell-Colom, J.A., Serratosa, J.M. and Hidalgo, A.. 1974. Estudio por espectroscopia infrarroja de los complejos vermiculite-ornitina. Opt Aplic 7: 8388.Google Scholar
George, W.O. and Mcintyre, P.S.. 1987. Infrared Spectroscopy. Chinchester (U.K.): Wiley and Sons. 537p.Google Scholar
Gonzalez Garcia, F. and Garcia Ramos, G.. 1960. On the genese and transformation of the vermiculite. In: Trans. 7th Int'l Congress Soil Science. Madison: Int'l Society Soil Science 4: 482491.Google Scholar
Guinier, A.. 1964. Théorie et technique de la radiocristallo-graphie. Paris: Dunod. 490663.Google Scholar
Martin de Vidales, J.L., Vila, E., Ruiz-Amil, A., de la Calle, C. and Pons, C.H.. 1990. Interstratification in Malawi vermiculite: Effect of bi-ionic K-Mg solutions. Clays & Clay Miner 38: 513521.CrossRefGoogle Scholar
Mering, J.. 1949. L'interférence des rayons X dans les systèmes à stratification désordonnée. Acta Cryst 2: 371380.CrossRefGoogle Scholar
Mifsud, A., Fornes, V. and Rausell-Colom, J.A.. 1971. Cationic complexes of vermiculite with 1-ornithine. Proc. Reunion Hispano-Belga de Minerales de la Arcilla, 121127.Google Scholar
Nakamoto, K.. 1986. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley. 484p.Google Scholar
Noel, P.G. Roeges. 1994. A guide to the complete interpretation of Infrared Spectra of organic structures. Chinchester (U.K.): Wiley and Sons. 340p.Google Scholar
Rausell-Colom, J.A. and Fornes, V.. 1974. Monodimensional Fourier analysis of some vermiculite-l-ornithine complexes. Am Mineral 59: 790798.Google Scholar
Slade, P.G., Telleria, M.I. and Radoslovich, E.W.. 1976. The structures of ornithine-vermiculite and 6-aminohexanoic acid-vermiculite. Clays & Clay Miner 24: 134141.CrossRefGoogle Scholar
Slade, P.G., Raupach, M. and Emerson, W.W.. 1978. The ordering of cetylpyridinium bromide on vermiculite. Clays & Clay Miner 26: 125134.CrossRefGoogle Scholar
Slade, P.G. and Raupach, M.. 1982. Structural model for benzidine-vermiculite. Clays & Clay Miner 30: 297305.CrossRefGoogle Scholar
Slade, P.G. and Stone, P.A.. 1983. Structure of a vermiculite-aniline intercalate. Clays & Clay Miner 31: 200206.CrossRefGoogle Scholar
Slade, P.G. and Stone, P.A.. 1984. Three-dimensional order and the structure of aniline-vermiculite. Clays & Clay Miner 32: 223226.CrossRefGoogle Scholar
Slade, P.G., Dean, C., Schultz, P.K. and Self, P.G.. 1987. Crystal structure of a vermiculite-anilinium intercalate. Clays & Clay Miner 35: 177188.CrossRefGoogle Scholar
Yamamuchi, H. and Kondo, S.. 1988. The structure of water and methanol adsorbed on silica gel by FT-NIR spectroscopy. Colloid Polym Sci 266: 855861.CrossRefGoogle Scholar