Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T06:26:51.275Z Has data issue: false hasContentIssue false

Effects of Dry Grinding and Leaching on the Crystal Structure of Chrysotile

Published online by Cambridge University Press:  02 April 2024

Helèné Suquet*
Affiliation:
Laboratoire de Réactivité de Surface et Structure, U.A. 1106 CNRS, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France

Abstract

The structural damage produced by dry grinding and acid leaching of chrysotile was studied by transmission and scanning electron microscopy, infrared spectroscopy, X-ray powder diffraction, and thermogravimetric analysis. Severe dry grinding converted the chrysotile fibers into fragments having strong potential basic reaction sites. These sites were immediately neutralized by molecules present in the atmosphere (e.g., H2O, CO2). Acid leaching transformed the chrysotile fibers into very porous, non-crystalline silica, which was easily fractured into short fragments. The damage produced in the chrysotile structure by grinding or leaching was assessed by monitoring the intensity of various infrared absorption bands.

Type
Research Article
Copyright
Copyright © 1989, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, M. C. and Taylor, H. F. W., 1963 The dehydration of chrysotile in air and under hydrothermal conditions Miner. Mag 33 467482.Google Scholar
Brindley, G. W. and Hayami, R., 1964 Kinetics and mechanisms of dehydration and recrystallization of serpentine Clays & Clay Minerals 34 3547.Google Scholar
Farmer, V. C., 1974 The Infrared Spectra of Minerals London Mineralogical Society 342348.CrossRefGoogle Scholar
Fripiat, J. J. and Mendelovici, E., 1968 Dérivés des silicates. I–Le dérivé méthylé du chrysotile Bull. Soc. Chim. France 2 483492.Google Scholar
Fournier, J. and Pézerat, H., 1982 Mode d’adsorption des hydrocarbures polycycliques aromatiques sur les amiantes. Cas du phénanthrène J. Chim. Phys 79 589596.CrossRefGoogle Scholar
Fournier, J. and Pézerat, H., 1986 Studies on surface properties of asbestos. III–Interactions between asbestos and polynuclear aromatic hydrocarbons Environ. Res 41 276295.CrossRefGoogle ScholarPubMed
Gronow, J. R., 1987 The dissolution of asbestos fibers in water Clay Miner 22 2135.CrossRefGoogle Scholar
Harrington, J. S. and Smith, M., 1964 Studies of hydrocarbons on mineral dusts, the evolution of 3–4 benzopyrene and oils from asbestos and coal dusts by serum Arch. Environ. Health 8 453458.CrossRefGoogle Scholar
Hodgson, A. A., Michaels, L. and Chissick, S. S., 1979 Chemistry and Physics of Asbestos Asbestos, Vol. 1 New York Wiley 83110.Google Scholar
Jolicoeur, C. and Duchesne, D., 1981 Infrared and thermogravimetric studies of the thermal degradation of chrysotile asbestos fibers: Evidence for matrix effects Can. J. Chem 59 15211526.CrossRefGoogle Scholar
Luys, M. J., Deroy, G., Vansant, E. F. and Adams, F., 1982 Characteristics of asbestos minerals J. Chem. Soc. Faraday Trans. I 78 35613571.CrossRefGoogle Scholar
Mackenzie, R. C., 1957 The Differential Thermal Investigation of Clays London Mineralogical Society 331333.Google Scholar
Pacco, F., Van Gangh, L. and Fripiat, J. J. (1976) Etude par spectroscopic infrarouge et résonance magnétique nucléaire de la distribution homogène des groupes silanols d’un gel de silice fibreux: Bull. Soc. Chim. France 5, 10211026.Google Scholar
Papirer, E. and Roland, P., 1981 Grinding of chrysotile in hydrocarbons, alcohol, and water Clays & Clay Minerals 29 161170.CrossRefGoogle Scholar
Roe, F. J. C. Walters, M. A. and Harrington, J. S., 1966 Tumours initiation by natural and contaminating asbestos Int. J. Cancer 1 491495.CrossRefGoogle ScholarPubMed
Selikoff, I. J., Hammond, E. C. and Churg, J., 1968 Asbestos exposure, smoking and neoplasma J. Amer. Med. Assoc 204 106112.CrossRefGoogle Scholar
Selikoff, I. J., Seidman, H. and Hammond, E. C., 1980 Mortality effects of cigarette smoking among amosite asbestos factory workers J. Natl. Cancer Inst 65 507513.Google ScholarPubMed
Suquet, H. (1989) The differences between adsorption properties of two Rhodesian chrysotile samples. Relation between the DTA features introduced by leaching and grinding: Can. J. Chem. 67, (in press).CrossRefGoogle Scholar
Suquet, H., Malard, C., Fournier, J. and Pézerat, H., 1987 Capacité d’échange cationique et charge de surface du chrysotile Bull. Miner 110 711715.CrossRefGoogle Scholar
Thomassin, N., Goni, J. H., Touray, J. C. and Jaurand, M. C., 1977 An XPS study of the dissolution kinetics of chrysotile in 0.1 N oxalic acid at different temperatures Phys. Chem. Miner 1 385398.CrossRefGoogle Scholar
Wicks, F. F., O’Hanley, D. S. and Bailey, S. W., 1988 Serpentine minerals: Structures and properties Hydrous Phyllosilicates Washington, D.C. Miner. Soc. America 113114.Google Scholar
Yariv, S. and Heller-Kallai, L., 1975 The relationship between the IR spectra of serpentines and their structures Clays & Clay Minerals 23 145152.CrossRefGoogle Scholar
Young, G. J. and Healey, F. H., 1954 The physical structure of asbestos J. Phys. Chem 58 881884.CrossRefGoogle Scholar
Zussman, J. and Brindley, G. W., 1957 Electron diffraction studies of serpentine minerals Amer. Mineral 42 133153.Google Scholar