Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-29T20:38:06.442Z Has data issue: false hasContentIssue false

Effect of the Dielectric Constant on the Double Layer on Clays

Published online by Cambridge University Press:  02 April 2024

A. K. Helmy
Affiliation:
Universidad Nacional del Sur, 8000 Bahia Blanca, Argentina
I. M. Natale
Affiliation:
Universidad Nacional del Sur, 8000 Bahia Blanca, Argentina

Abstract

Electric potentials as a function of distance were calculated for a model of the double layer on clays in which a surface zone a few water molecules thick has a low dielectric constant. This zone is followed by bulk water with a normal dielectric constant. The double layer potentials were found to be lower than those obtained from the Gouy model, in which water has a normal dielectric constant throughout the double layer.

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barclay, L., Harrington, A. and Ottewill, R. H., 1972 The measurement of forces between particles in disperse systems Kolloid Z. Z. Polym. 250 655666.CrossRefGoogle Scholar
Bell, G. M. and Peterson, G. C., 1972 Calculation of the electric double layer force between unlike spheres J. Colloid Interface Sci. 41 542565.CrossRefGoogle Scholar
Devereux, O. F. and de Bruyn, P. L., 1963 Interaction of Plane-Parallel Double Layers Cambridge, Massachusetts M.I.T. Press, Massachusetts Institute of Technology.Google Scholar
Franklin, P., 1944 Methods of Advanced Calculus New York McGraw-Hill.Google Scholar
Fripiat, J., Cases, J., Francois, M. and Letellier, M., 1983 Thermodynamic and microdynamic behavior of water in clay suspensions and gels J. Colloid Interface Sci. 89 378400.CrossRefGoogle Scholar
Hall, P. G. and Rose, M. A., 1978 Dielectric properties of water adsorbed by kaolinite clays J. Chem. Soc. Faraday 114 12211233.CrossRefGoogle Scholar
Hauser, E. and Le Beau, D. S., 1941 Studies in colloidal clays J. Phys. Chem. 45 5465.CrossRefGoogle Scholar
Helmy, A. K., 1973 Electric double layer across two media J. Chem. Phys. 59 31013104.CrossRefGoogle Scholar
Hoekstra, P. and Doyle, W. T., 1971 Dielectric relaxation of surface adsorbed water J. Colloid Interface Sci. 36 513521.CrossRefGoogle Scholar
Jahnke, E., Emde, F. and Losch, F., 1966 Tables of Higher Functions Stuttgart Teubner Verlags..Google Scholar
Levine, S. and Fawcett, W. R., 1979 Some aspects of discreteness of charge and ion size effects for ions adsorbed at charged metal-aqueous electrolyte interfaces J. Electroanal. Chem. 99 265281.CrossRefGoogle Scholar
Levine, S. and Robinson, K., 1972 The discreteness of charge effect at charged aqueous interfaces J. Electroanal. Chem. 38 253269.CrossRefGoogle Scholar
Levine, S., Robinson, K. and Fawcett, W. R., 1974 The self image potential and its role in electrode kinetics J. Electroanal. Chem. 54 237252.CrossRefGoogle Scholar
Mamy, J., 1968 Recherches sur l’hydratation de la mont-morillonite: propriétés diélectriques et structure du film d’eau Ann. Agron. 19 175292.Google Scholar
McCafferty, E. and Zettlemoyer, A. C., 1971 Adsorption of water on Fe2O3 Disc. Faraday Soc. 52 239254.CrossRefGoogle Scholar
Nelson, S. M., Huang, H. H. and Sutton, L. E., 1969 Dielectric study of water, ethanol and acetone adsorbed on kaolinite Trans. Faraday Soc. 65 225243.CrossRefGoogle Scholar
Oakes, D. T. and Swineford, A., 1960 Solids concentration effects in bentonite drilling fluids Clays and Clay Minerals, Proc. 8th. Natl. Conf New York Pergamon Press 252273.CrossRefGoogle Scholar
Swartzen-Allen, S. L. and Matijevic, E., 1975 Colloid and surface properties of clay suspensions J. Colloid Interface Sci. 50 143153.CrossRefGoogle Scholar