Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-01T12:28:32.663Z Has data issue: false hasContentIssue false

Effect of Sonication on Particle-Size Distribution in Natural Muscovite and Biotite

Published online by Cambridge University Press:  01 January 2024

Luis A. Pérez-Maqueda*
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C. Américo Vespucio s/n, 41092 Sevilla, Spain
Francisco Franco
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
Miguel A. Avilés
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C. Américo Vespucio s/n, 41092 Sevilla, Spain
Juan Poyato
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C. Américo Vespucio s/n, 41092 Sevilla, Spain
José L. Pérez-Rodríguez
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C. Américo Vespucio s/n, 41092 Sevilla, Spain
*
*E-mail address of corresponding author: maqueda@cica.es

Abstract

The effects of ultrasound treatment on the mean particle size, crystal structure, crystallite dimensions and specific surface area of natural muscovite and biotite samples have been investigated. Sonication of macroscopic flakes of muscovite and biotite produced a drastic particle-size reduction. The conditions for the preparation of micron and submicron-sized muscovite and biotite particles of narrow particle-size distribution by sonochemistry are described. The effect of sonication on particle-size reduction is more significant for muscovite than for biotite. Thus, for long sonication times (100 h), submicron and micron particles are predominant in muscovite and biotite, respectively. The resulting materials are crystalline, as assayed by X-ray diffraction, only broadening of the diffraction lines due to size-reduction was observed. Nuclear magnetic resonance studies revealed that the coordination of Al and Si was not modified by the treatment. Chemical analysis showed that the composition of the sample was not affected by the sonication except for a small contamination by Ti from the tip cup of the sonication instrument.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fanning, D.S. Keramidas, V.Z., Dixon, J.B. and Weed, S.B., (1977) Micas Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 195258.Google Scholar
Harben, P.W., (1995) The Industrial Minerals Handbook London Industrial Minerals Division. Metal Bulletin plc.Google Scholar
Hedrick, J.B., (1999) American Ceramic Society Bulletin 78 136138.Google Scholar
Jackson, M.L., (1975) Soil Chemical Analysis—Advanced Course 2nd Madison, Wisconsin Published by the author.Google Scholar
Justo, A., (1984) Estudio Fisicoquímico y Mineralógico de Vermiculitas de Andalucía y Badajoz Sevilla, Spain Universidad de Sevilla PhD thesis.Google Scholar
Mackenzie, K.J.D. Brown, I.W.M. Cardile, C.M. and Meinhold, R.H., (1987) The thermal reactions of muscovite studied by high-resolution solid-state 29-Si and 27-Al NMR Journal of Materials Science 22 26452654 10.1007/BF01082158.Google Scholar
Newman, A.C.D. Brown, G. and Newman, A.C.D., (1987) The chemical constitutions of clays Chemistry of Clays and Clay Minerals London Mineralogical Society 1128.Google Scholar
Ovadyahu, D. Yariv, S. Lapides, I. and Deutsch, Y., (1998) Mechanochemical adsorption of phenol by tot swelling clay minerals. II Simultaneous DTA and TG study Journal of Thermal Analysis and Calorimetry 51 431447 10.1007/BF03340183.Google Scholar
Papirer, E. Eckardt, A. Muller, F. and Yvon, J., (1990) Grinding of muscovite, influence of the grinding medium Journal of Materials Science 25 51095117 10.1007/BF00580138.Google Scholar
Péirez-Maqueda, L.A. Caneo, O.B. Poyato, J. and Péirez-Rodríguez, J.L., (2001) Preparation and characterization of micron and submicron-sized vermiculite Physics and Chemistry of Minerals 28 6166 10.1007/s002690000133.Google Scholar
Pérez-Rodríguez, J.L. Madrid, L. and Sánchez-Soto, P.J., (1988) Effect of dry grinding on pyrophyllite Clay Minerals 23 399410 10.1180/claymin.1988.023.4.07.Google Scholar
Pérez-Rodríguez, J.L. Pérez-Maqueda, L.A. Justo, A. and Sánchez-Soto, P.J., (1992) Influence of grinding contamination on high temperature phases of kaolinite Industrial Ceramics 12 109113.Google Scholar
Pérez-Rodríguez, J.L. Pérez-Maqueda, L.A. Justo, A. and Sánchez-Soto, P.J., (1993) Influence of grinding contamination on high temperature phases of pyrophyllite Journal of the European Ceramics Society 11 335339 10.1016/0955-2219(93)90033-N.Google Scholar
Pérez-Rodríguez, J.L. Carrero, F. Pérez-Maqueda, L.A. and Poyato, J., (2002) Sonication as a tool for preparing nanometric vermiculite particles Nanotechnology 13 382387 10.1088/0957-4484/13/3/328.Google Scholar
Peters, D., (1996) Ultrasound in materials chemistry Journal of Material Chemistry 6 16051618 10.1039/jm9960601605.Google Scholar
Sánchez-Soto, P.J. Wiewióra, A. Aviles, M.A. Justo, A. Pérez-Maqueda, L.A. Pérez-Rodríguez, J.L. and Bylina, P., (1997) Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape Applied Clay Science 12 297312 10.1016/S0169-1317(97)00013-6.Google Scholar
Sánchez-Soto, P.J. Pérez-Rodríguez, J.L. Sobrados, I. and Sanz, J., (1997) Influence of grinding in pyrophyllitemullite thermal transformation assessed by 29Si and 27Al MAS NMR spectroscopies Chemistry of Materials 9 677684 10.1021/cm960224+.Google Scholar
Sánchez-Soto, P.J. de Jiménez Haro, M.C. Pérez-Maqueda, L.A. Varona, I. and Pérez-Rodríguez, J.L., (2000) Effects of dry grinding on the structural changes of kaolinite powders Journal of the American Ceramic Society 83 16491657 10.1111/j.1151-2916.2000.tb01444.x.Google Scholar
Sanz, J. and Serratosa, J.M., (1984) Si-29 and Al-27 highresolution MAS-NMR spectra of phyllosilicates Journal of the American Chemical Society 106 47904793 10.1021/ja00329a024.Google Scholar
Sanz, J. and Serratosa, J.M., (1984) Distinction of tetrahedrally and octahedrally coordinated Al in phyllosilicates by NMR-spectroscopy Clay Minerals 19 113115 10.1180/claymin.1984.019.1.13.Google Scholar
Somasundaran, A., Onada, G. and Mench, L., (1978) Theories of grinding Ceramic Processing Before Firing New York Wiley 105124.Google Scholar
Temuujin, J. Okada, K. Jadambaa, T.S. MacKenzie, K.J.D. and Amarsanaa, J., (2003) Effect of grinding on the leaching behaviour of pyrophyllite Journal of the European Ceramic Society 23 12771282 10.1016/S0955-2219(02)00297-2.Google Scholar
Thomas, J Jr. and Bohor, B.F., (1969) Surface area of vermiculite with nitrogen and carbon dioxide as adsorbates Clays and Clay Minerals 17 205209 10.1346/CCMN.1969.0170403.Google Scholar