Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T04:05:05.428Z Has data issue: false hasContentIssue false

Dissolution Rates of Allophane With Variable Fe Contents: Implications for Aqueous Alteration and the Preservation of X-Ray Amorphous Materials on Mars

Published online by Cambridge University Press:  01 January 2024

S. J. Ralston*
Affiliation:
University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA Jacobs, NASA Johnson Space Center, Mail Code XI3, Houston, TX 77058, USA
Elisabeth M. Hausrath
Affiliation:
University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA
Oliver Tschauner
Affiliation:
University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA
Elizabeth Rampe
Affiliation:
NASA Johnson Space Center, Houston, TX 77058, USA
Tanya S. Peretyazhko
Affiliation:
Jacobs, NASA Johnson Space Center, Mail Code XI3, Houston, TX 77058, USA
Roy Christoffersen
Affiliation:
Jacobs, NASA Johnson Space Center, Mail Code XI3, Houston, TX 77058, USA
Chris Defelice
Affiliation:
University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA
Hyejeong Lee
Affiliation:
University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA
*
*E-mail address of corresponding author: silas.ralston@nasa.gov

Abstract

Recent measurements from Mars document X-ray amorphous/nano-crystalline materials in multiple locations across the planet. Despite their prevalence, however, little is known about these materials or what their presence implies for the history of Mars. The X-ray amorphous component of the martian soil in Gale crater has an X-ray diffraction pattern that can be fit partially with allophane (approximately Al2O3⋅(SiO2)1.3–2⋅(H2O)2.5–3), and the low-temperature water-release data are consistent with allophane. The chemical data from Gale crater suggest that other silicate materials similar to allophane, such as Fe-substituted allophane (approximately (Fe2O3)0.01–0.5(Al2O3)0.5–0.99⋅(SiO2)2⋅3H2O), may also be present. In order to investigate the properties of these potential poorly crystalline components of the martian soil, Fe-free allophane (Fe:Al = 0), Fe-poor allophane (Fe:Al = 1:99), and Fe-rich allophane (Fe:Al = 1:1) were synthesized and then characterized using electron microscopy and Mars-relevant techniques, including infrared spectroscopy, X-ray diffraction, and evolved gas analysis. Dissolution experiments were performed under acidic (initial pH values pH0 = 3.01, pH0 = 5.04), near-neutral (pH0 = 6.99), and alkaline (pH0 = 10.4) conditions in order to determine dissolution kinetics and alteration phases for these poorly crystalline materials. Dissolution rates (rdiss), based on the rate of Si release into solution, show that these poorly crystalline materials dissolve approximately an order of magnitude faster than crystalline phases with similar compositions at all pH conditions. For Fe-free allophane, logrdiss = –10.65–0.15 × pH; for Fe-poor allophane, logrdiss = –10.35–0.22 × pH; and for Fe-rich allophane, logrdiss = –11.46–0.042 × pH at 25°C, where rdiss has the units of mol m–2 s–1. The formation of incipient phyllosilicate-like phases was detected in Fe-free and Fe-rich allophane reacted in aqueous solutions with pH0 = 10.4 (steady-state pH ≈ 8). Mars-analog instrument analyses demonstrate that Fe-free allophane, Fe-poor allophane, and Fe-rich allophane are appropriate analogs for silicate phases in the martian amorphous soil component. Therefore, similar materials on Mars must have had limited interaction with liquid water since their formation. Combined with chemical changes expected from weathering, such as phyllosilicate formation, the rapid alteration of these poorly crystalline materials may be a useful tool for evaluating the extent of aqueous alteration in returned samples of martian soils.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abidin, Z., Matsue, N., & Henmi, T. (2004). Dissolution mechanism of nano-ball allophane with dilute alkali solution. Clay Science, 12, 213222.Google Scholar
Achilles, C. N., Downs, R. T., Ming, D. W., Rampe, E. B., Morris, R. V., Treiman, A. H., Morrison, S. M., Blake, D. F., Vaniman, D. T., Ewing, R. C., Chipera, S. J., Yen, A. S., Bristow, T. F., Ehlmann, B. L., Gellert, R., Hazen, R. M., Fendrich, K. V., Craig, P. I., Grotzinger, J. P., ... Morookian, J. M. (2017). Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars. Journal of Geophysical Research, Planets, 122, 23442361.CrossRefGoogle Scholar
Baker, L. L., & Strawn, D. G. (2012). Fe K-edge XAFS spectra of phyllosilicates of varying crystallinity. Physics and Chemistry of Minerals, 39, 675684.CrossRefGoogle Scholar
Baker, L. L., & Strawn, D. G. (2014). Temperature effects on synthetic nontronite crystallinity and implications for nontronite formation in Columbia River Basalts. Clays and Clay Minerals, 62, 89101.CrossRefGoogle Scholar
Baker, L. L., Nickerson, R. D., & Strawn, D. G. (2014). XAFS study of Fe-substituted allophane and imogolite. Clays and Clay Minerals, 62, 2034.CrossRefGoogle Scholar
Baldermann, A., Dohrmann, R., Kaufhold, S., Nickel, C., Letofsky-Papst, I., & Dietzel, M. (2014). The Fe-Mgsaponite solid solution series—a hydrothermal synthesis study. Clay Minerals, 49, 391415.CrossRefGoogle Scholar
Beard, A. D., Downes, H., & Chaussidon, M. (2015). Petrology of a nonindigenous microgranitic clast in polymict ureilite EET 87720: Evidence for formation of evolved melt on an unknown parent body. Meteoritics & Planetary Science, 50, 16131623.CrossRefGoogle Scholar
Bibring, J. P., Langevin, Y., Mustard, J. F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., Forget, F., Berthe, M., Bibring, J. P., Gendrin, A., Gomez, C., Gondet, B., Jouglet, D., Poulet, F., Soufflot, A., Vincendon, M., ... Neukum, G. (2006). Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data. Science, 312, 400404.CrossRefGoogle ScholarPubMed
Bish, D. L., & Duffy, C. J. (1990). Thermogravimetric analysis of minerals. In Thermal Analysis in Clay Science (Stucki, J. W. and Bish, D. L., eds.), The Clay Minerals Society, Chantilly, VA, USA, (pp. 95189).Google Scholar
Bish, D.L., Blake, D.F., Vaniman, D.T., Chipera, S.J., Morris, R.V., Ming, D.W., Treiman, A.H., Sarrazin, P., Morrison, S.M., Downs, R.T., Achilles, C.N., Yen, A.S., Bristow, T.F., Crisp, J.A., Morookian, J.M., Farmer, J.D., Rampe, E.B., Stolper, E.M., Spanovich, N., & the MSL Science Team. (2013). X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale crater. Science, 341, 1238932.CrossRefGoogle ScholarPubMed
Bishop, J. L., & Rampe, E. B. (2016). Evidence for a changing Martian climate from the mineralogy at Mawrth Vallis. Earth and Planetary Science, Letters, 448, 4248.CrossRefGoogle Scholar
Bishop, J. L., Rampe, E. B., Bish, D. L., Abidin, Z., Baker, L. L., Matsue, N., & Henmi, T. (2013). Spectral and hydration properties of allophane and imogolite. Clays and Clay Minerals, 61, 5774.CrossRefGoogle Scholar
Blake, D.F., Morris, R.V., Kocurek, G., Morrison, S.M., Downs, R.T., Bish, D., Ming, D.W., Edgett, K.S., Rubin, D., Goetz, W., Madsen, M.B., Sullivan, R., Gellert, R., Campbell, I., Treiman, A.H., McLennan, S.M., Yen, A.S., Grotzinger, J., Vaniman, D.T., Chipera, S.J., Achilles, C.N., Rampe, , Sumner, E.B., Meslin, P.Y., Maurice, S., Forni, O., Gasnault, O., Fisk, M., Schmidt, M., Mahaffy, P., Leshin, L.A., Glavin, D., Steele, A., Freissinet, C., Navarro-Gonzalez, R., Yingst, R.A., Kah, L.C., Bridges, N., Lewis, K.W., Bristow, T.F., Farmer, J.D., Crisp, J.A., Stolper, E.M., Marais, D.J.D., Sarrazin, P., & the MSL Science Team. (2013). Curiosity at Gale crater, Mars: Characterization and analysis of the Rocknest sand shadow. Science, 341, 1239505.CrossRefGoogle ScholarPubMed
Bleeker, P., & Parfitt, R. L. (1974). Volcanic ash and its clay mineralogy at Cape Hoskins, New Britain, Papua New Guinea. Geoderma, 11, 123135.CrossRefGoogle Scholar
Carr, M. H. (1996). Water erosion on Mars and its biologic implications. Endeavour, 20, 5660.CrossRefGoogle ScholarPubMed
Catalano, J. G. (2013). Thermodynamic and mass balance constraints on iron-bearing phyllosilicate formation and alteration pathways on early Mars. Journal of Geophysical Research, Planets, 118, 21242136.CrossRefGoogle Scholar
Cheah, S.-F., Kraemer, S. M., Cervini-Silva, J., & Sposito, G. (2003). Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chemical Geology, 198, 6375.CrossRefGoogle Scholar
Childs, C. W., Parfitt, R. L., & Newman, R. H. (1990). Structural studies of Silica Springs allophane. Clay Minerals, 25, 329341.CrossRefGoogle Scholar
Decarreau, A., Bonnin, D., Badaut-Trauth, D., Couty, R., & Kaiser, P. (1987). Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clay Minerals, 22, 207223.CrossRefGoogle Scholar
DeFelice, C., Mallick, S., Saal, A. E., & Huang, S. (2019). An isotopically depleted lower mantle component is intrinsic to the Hawaiian mantle plume. Nature Geoscience, 12, 487492.CrossRefGoogle Scholar
Dehouck, E., McLennan, S. M., Meslin, P. Y., & Cousin, A. (2014). Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars. Journal of Geophysical Research, Planets, 119, 26402657.CrossRefGoogle Scholar
Dehouck, E., McLennan, S. M., Sklute, E. C., & Darby Dyar, M. (2017). Stability and fate of ferrihydrite during episodes of water/rock interactions on early Mars: An experimental approach. Journal of Geophysical Research, Planets, 122, 358382.CrossRefGoogle Scholar
Denaix, L. (1993). Synthèse et propriétés d'aluminosilicates non lamellaires: l'imogolite et les allophanes, Sciences de la Terre. Université Pierre et Marie Curie (Paris 6), Paris, FRA, p. 223.Google Scholar
Dove, P. M., & Crerar, D. A. (1990). Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochimica et Cosmochimica Acta, 54, 955969.CrossRefGoogle Scholar
Dove, P. M., & Nix, C. J. (1997). The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz. Geochimica et Cosmochimica Acta, 61, 33293340.CrossRefGoogle Scholar
Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E., & Franson, M. A. H. (2005). Standard methods for the examination of water and wastewater. American Public Health Association.Google Scholar
Eggleton, R. A., & Tilley, D. B. (1998). Hisingerite: a ferric kaolin mineral with curved morphology. Clays and Clay Minerals, 46, 400413.CrossRefGoogle Scholar
Elwood-Madden, M. E., Madden, A. S., & Rimstidt, J. D. (2009). How long was Meridiani Planum wet? Applying a jarosite stopwatch to determine the duration of aqueous diagenesis. Geology, 37, 635638.CrossRefGoogle Scholar
Elwood-Madden, M. E., Madden, A. S., Rimstidt, J. D., Zahrai, S., Kendall, M. R., & Miller, M. A. (2012). Jarosite dissolution rates and nanoscale mineralogy. Geochimica et Cosmochimica Acta, 91, 306321.CrossRefGoogle Scholar
Farmer, V. (1997). Conversion of ferruginous allophanes to ferruginous beidellites at 95°C under alkaline conditions with alternating oxidation and reduction. Clays and Clay Minerals, 45, 591597.CrossRefGoogle Scholar
Farmer, V., Krishnamurti, G., & Huang, P. (1991). Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in a calcareous environment. Clays and Clay Minerals, 39, 561570.CrossRefGoogle Scholar
Frink, C. R., & Peech, M. (1963). Hydrolysis of the aluminum ion in dilute aqueous solutions. Inorganic Chemistry, 2, 473478.CrossRefGoogle Scholar
Frushour, A.M. & Bish, D.L. (2017). Laboratory studies of smectite chloritization: applications to the clay mineralogy of Gale crater, Mars. Lunar Planetary Science XLVIII. Lunar Planetary Institute, Houston, #2622(abstr.).Google Scholar
Frydenvang, J., Gasada, P. J., Hurowitz, J. A., Grotzinger, J. P., Wiens, R. C., Newsom, H. E., Edgett, K. S., Watkins, J., Bridges, J. C., Maurice, S., Risk, M. R., Johnson, J. R., Rapin, W., Stein, N. T., Clegg, S. M., Schwenzer, S. P., Bedford, C. C., Edwards, P., Mangold, N., ... Vasavada, A. R. (2017). Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars. Geophysical Research Letters, 44, 47164724.CrossRefGoogle Scholar
Gainey, S. R., Hausrath, E. M., Hurowitz, J. A., & Milliken, R. E. (2014). Nontronite dissolution rates and implications for Mars. Geochimica et Cosmochimica Acta, 126, 192211.CrossRefGoogle Scholar
Gainey, S. R., Hausrath, E. M., Adcock, C. T., Tschauner, O., Hurowitz, J. A., Ehlmann, B. L., Xiao, Y., & Bartlett, C. L. (2017). Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars. Nature Communications, 8, 1230.CrossRefGoogle ScholarPubMed
Gautier, J.-M., Oelkers, E. H., & Schott, J. (2001). Are quartz dissolution rates proportional to B.E.T. surface areas? Geochimica et Cosmochimica Acta, 65, 10591070.CrossRefGoogle Scholar
Gibbons, R. D., Grams, N. E., Jarke, F. H., & Stoub, K. P. (1991). Practical quantitation limits. Chemometrics and Intelligent Laboratory Systems, 12, 225235.CrossRefGoogle Scholar
Gislason, S. R., & Oelkers, E. H. (2003). Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochimica et Cosmochimica Acta, 67, 38173832.CrossRefGoogle Scholar
Goodyear, J., & Duffin, W. J. (1961). An X-ray examination of an exceptionally well crystallized kaolinite. Mineralogical Magazine, 32, 902907.CrossRefGoogle Scholar
Grotzinger, J.P., Gupta, S., Malin, M.C., Rubin, D.M., Schieber, J., Siebach, K., Sumner, D.Y., Stack, K.M., Vasavada, A.R., Arvidson, R.E., Calef, F. III, Edgar, L., Fischer, W.F., Grant, J.A., Griffes, J., Kah, L.C., Lamb, M.P., Lewis, K.W., Mangold, N., Minitti, M.E., Palucis, M., Rice, M., Williams, R.M., Yingst, R.A., Blake, D., Blaney, D., Conrad, P., Crisp, J., Dietrich, W.E., Dromart, G., Edgett, K.S., Ewing, R.C., Gellert, R., Hurowitz, J.A., Kocurek, G., Mahaffy, P., McBride, M.J., McLennan, S.M., Mischna, M., Ming, D., Milliken, R., Newsom, H., Oehler, D., Parker, T.J., Vaniman, D., Wiens, R.C., & Wilson, S.A. (2015). Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 350, aac7575.CrossRefGoogle ScholarPubMed
Gustafsson, J.P., Karltun, E., & Bhattacharya, P. (1998). Allophane and imogolite in Swedish soils. Royal Institute of Technology (KTH), Stockholm.Google Scholar
Harder, H. (1976). Nontronite synthesis at low temperatures. Chemical Geology, 18, 169180.CrossRefGoogle Scholar
Harder, H. (1978). Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals, 26, 6572.CrossRefGoogle Scholar
Hausrath, E. M., Ming, D. W., Peretyazhko, T. S., & Rampe, E. B. (2018). Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars. Earth and Planetary Science Letters, 491, 110.CrossRefGoogle Scholar
Helm, L., & Merbach, A. E. (2005). Inorganic and bioinorganic solvent exchange mechanisms. Chemical Reviews, 105, 19231959.CrossRefGoogle ScholarPubMed
Henmi, T., Wells, N., Childs, C. W., & Parfitt, R. L. (1980). Poorly-ordered iron-rich precipitates from springs and streams on andesitic volcanoes. Geochimica et Cosmochimica Acta, 44, 365372.CrossRefGoogle Scholar
Hisinger, W. (1828). Analyse des mit dem Namen Hisingerit belegten Eisensilicats. Annalen der Physik und Chemie von J.C. Poggendorff Bd, 13, 13508.Google Scholar
Hsu, P. H. (1976). Comparison of iron(III) and aluminum in precipitation of phosphate from solution. Water Research, 10, 903907.CrossRefGoogle Scholar
Huertas, F. J., Caballero, E., Jiménez de Cisneros, C., Huertas, F., & Linares, J. (2001). Kinetics of montmorillonite dissolution in granitic solutions. Applied Geochemistry, 16, 397407.CrossRefGoogle Scholar
Huffman, E.O. (1960). Rates and mechanisms of dissolution of some ferric phosphates. Soil Science, 18.CrossRefGoogle Scholar
Icenhower, J. P., & Dove, P. M. (2000). The dissolution kinetics of amorphous silica into sodium chloride solutions: Effects of temperature and ionic strength. Geochimica et Cosmochimica Acta, 64, 41934203.CrossRefGoogle Scholar
Ingles, O. G., & Willoughby, D. R. (1967). An occurrence of hisingerite with evidence of its genesis. Soil Science, 104, 383385.CrossRefGoogle Scholar
Iyoda, F., Hayashi, S., Arakawa, S., John, B., Okamoto, M., Hayashi, H., & Yuan, G. D. (2012). Synthesis and adsorption characteristics of hollow spherical allophane nano-particles. Applied Clay Science, 56, 7783.CrossRefGoogle Scholar
Jeute, T., Baker, L. L., Bishop, J. L., Abidin, Z., & Rampe, E. B. (2021). Spectroscopic analysis of allophane and imogolite samples with variable Fe abundance for characterizing the poorly crystalline components on Mars. American Mineralogist, 106, 527540.CrossRefGoogle Scholar
Karube, J., Nakaishi, K., Sugimoto, H., & Fujihira, M. (1996). Size and shape of allophane particles in dispersed aqueous systems. Clays and Clay Minerals, 44, 485491.CrossRefGoogle Scholar
Kitagawa, Y. (1973). Substitution of aluminum in allophane by iron. Clay Science, 4, l5l-154.Google Scholar
Kitagawa, Y. (1974). Dehydration of allophane and its structural formula. American Mineralogist, 59,1094–1098.Google Scholar
Kloprogge, J. T., Evans, R., Hickey, L., & Frost, R. L. (2002). Characterization and Al-pillaring of smectites from Miles, Queensland (Australia). Applied Clay Science, 20, 157163.CrossRefGoogle Scholar
Lamb, A. B., & Jacques, A. G. (1938). The slow hydrolysis of ferric chloride in dilute solutions–II. The change in hydrogen ion concentration. Journal of the American Chemical Society, 60, 12151225.CrossRefGoogle Scholar
Lasaga, A. C. (1984). Chemical kinetics of water–rock interactions. Journal of Geophysical Research, 89, 40094025.CrossRefGoogle Scholar
Leshin, L.A., Mahaffy, P.R., Webster, C.R., Cabane, M., Coll, P., Conrad, P.G., Archer, P.D. Jr., Atreya, S.K., Brunner, A.E., Buch, A., Eigenbrode, J.L., Flesch, G.J., Franz, H.B., Freissinet, C., Glavin, D.P., McAdam, A.C., Miller, K.E., Ming, D.W., Morris, R.V., Navarro-Gonzalez, R., Niles, P.B., Owen, T., Pepin, R.O., Squyres, S., Steele, A., Stern, J.C., Summons, R.E., Sumner, D.Y., Sutter, B., Szopa, C., Teinturier, S., Trainer, M.G., Wray, J.J., Grotzinger, J.P., & the MSL Science Team. (2013). Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science, 341, 1238937.CrossRefGoogle ScholarPubMed
Liang, D.-T., & Readey, D. W. (1987). Dissolution kinetics of crystalline and amorphous silica in hydrofluoric-hydrochloric acid mixtures. Journal of the American Ceramic Society, 70, 570577.CrossRefGoogle Scholar
Meslin, P.Y., Gasnault, O., Forni, O., Schroder, S., Cousin, A., Berger, G., Clegg, S.M., Lasue, J., Maurice, S., Sautter, V., Le Mouelic, S., Wiens, R.C., Fabre, C., Goetz, W., Bish, D., Mangold, N., Ehlmann, B., Lanza, N., Harri, A.M., Anderson, R., Rampe, E., McConnochie, T.H., Pinet, P., Blaney, D., Leveille, R., Archer, D., Barraclough, B., Bender, S., Blake, D., Blank, J.G., Bridges, N., Clark, B.C., DeFlores, L., Delapp, D., Dromart, G., Dyar, M.D., Fisk, M., Gondet, B., Grotzinger, J., Herkenhoff, K., Johnson, J., Lacour, J.L., Langevin, Y., Leshin, L., Lewin, E., Madsen, M.B., Melikechi, N., Mezzacappa, A., Mischna, M.A., Moores, J.E., Newsom, H., Ollila, A., Perez, R., Renno, N., Sirven, J.B., Tokar, R., de la Torre, M., d'Uston, L., Vaniman, D., Yingst, A., & the MSL Science Team (2013). Soil diversity and hydration as observed by ChemCam at Gale crater, Mars. Science, 341.CrossRefGoogle Scholar
Miller, J. L., Elwood-Madden, A. S., Phillips-Lander, C. M., Pritchett, B. N., & Elwood-Madden, M. E. (2016). Alunite dissolution rates: Dissolution mechanisms and implications for Mars. Geochimica et Cosmochimica Acta, 172, 93106.CrossRefGoogle Scholar
Milliken, R.E. & Bish, D.L. (2014). Distinguishing hisingerite from other clays and its importance for Mars. Lunar and Planetary Science XLV. Lunar Planetary Institute, Houston, #2251(abstr.).Google Scholar
Milliken, R. E., Swayze, G. A., Arvidson, R. E., Bishop, J. L., Clark, R. N., Ehlmann, B. L., Green, R. O., Grotzinger, J. P., Morris, R. V., Murchie, S. L., Mustard, J. F., & Weitz, C. (2008). Opaline silica in young deposits on Mars. Geology, 36, 847.CrossRefGoogle Scholar
Montarges-Pelletier, E., Bogenez, S., Pelletier, M., Razafitianamaharavo, A., Ghanbaja, J., Lartiges, B., & Michot, L. (2005). Synthetic allophane-like particles: textural properties. Colloids and Colloid Surfaces A: Physicochemical and Engineering Aspects, 255, 110.CrossRefGoogle Scholar
Moore, D. M., & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. (2nd ed., p. 378). Oxford University Press, New York.Google Scholar
Morris, R. V., Golden, D. C., Bell, J. F., Shelfer, T. D., Scheinost, A. C., Hinman, N. W., Furniss, G., Mertzman, S. A., Bishop, J. L., Ming, D. W., Allen, C. C., & Britt, D. T. (2000). Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfnder samples. Journal of Geophysical Research, Planets, 105, 17571817.CrossRefGoogle Scholar
Morris, R. V., Vaniman, D. T., Blake, D. F., Gellert, R., Chipera, S. J., Rampe, E. B., Ming, D. W., Morrison, S. M., Downs, R. T., Treiman, A. H., Yen, A. S., Grotzinger, J. P., Achilles, C. N., Bristow, T. F., Crisp, J. A., Des Marais, D. J., Farmer, J. D., Fendrich, K. V., Frydenvang, J., ... Schwenzer, S. P. (2016). Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater. Proceedings of the National Academy of Sciences of the United States of America, 113, 70717076.CrossRefGoogle ScholarPubMed
Morrison, S. M., Downs, R. T., Blake, D. F., Vaniman, D. T., Ming, D. W., Hazen, R. M., Treiman, A. H., Achilles, C. N., Yen, A. S., Morris, R. V., Rampe, E. B., Bristow, T. F., Chipera, S. J., Sarrazin, P. C., Gellert, R., Fendrich, K. V., Morookian, J. M., Farmer, J. D., Des Marais, D. J., & Craig, P. I. (2018). Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars. American Mineralogist, 103, 857871.CrossRefGoogle Scholar
Mustoe, G. E. (1996). Hisingerite – A rare iron mineral from walker Valley, Skagit County, Washington. Washington Geology, 24, 1419.Google Scholar
Nagasawa, K. (1978). Weathering of volcanic ash and other pyroclastic materials. Pp. 105125 in: Clays and Clay Minerals, of Japan (Sudo, T. and Shimoda, S., editors). Elsevier Science Publishing Company, Amsterdam.CrossRefGoogle Scholar
Nagy, K. L., Blum, A. E., & Lasaga, A. C. (1991). Dissolution and precipitation kinetics of kaolinite at 80°C and pH 3: the dependence on solution saturation state. American Journal of Science, 291, 649696.CrossRefGoogle Scholar
Ohashi, F., Wada, S. I., Suzuki, M., Maeda, M., & Tomura, S. (2002). Synthetic allophane from high-concentration solutions: nanoengineering of the porous solid. Clay Minerals, 37, 451456.CrossRefGoogle Scholar
Olsen, A. A., Hausrath, E. M., & Rimstidt, J. D. (2015). Forsterite dissolution rates in Mg-sulfate-rich Mars-analog brines and implications of the aqueous history of Mars. Journal of Geophysical Research, Planets, 120, 388400.CrossRefGoogle Scholar
Ossaka, J., Iwai, S.-I., Kasai, M., Shirai, T., & Hamada, S. (1971). Coexistence states of iron in synthesized ironbearing allophane (Al2O3-SiO2-Fe2O3-H2O system). Bulletin of the Chemical Society of Japan, 44, 716718.CrossRefGoogle Scholar
Palandri, J.L. & Kharaka, Y.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. U.S. Geological Survey Water-Resources Investigations Report 041068.CrossRefGoogle Scholar
Parfitt, R. L. (1990). Allophane in New Zealand – a review. Australian Journal of Soil Research, 28, 343360.CrossRefGoogle Scholar
Parfitt, R. L. (2009). Allophane and imogolite: role in soil biogeochemical processes. Clay Minerals, 44,135–155.CrossRefGoogle Scholar
Pickering, R. (2014). Tri-Octahedral Domains and Crystallinity in Synthetic Clays: Implications for Lacustrine Paleoenvironmental Reconstruction. Georgia State University.Google Scholar
Potts, P. J., Webb, P. C., & Watson, J. S. (1984). Energy dispersive X-ray fluorescence analysis of silicate rocks for major and trace elements. X-Ray Spectrometry, 13, 215.CrossRefGoogle Scholar
Pritchett, B. N., Madden, M.E.E., & Madden, A.S. (2012). Jarosite dissolution rates and maximum lifetimes in high salinity brines: Implications for Earth and Mars. Earth and Planetary Science Letters, 357, 327336.CrossRefGoogle Scholar
Rampe, E.B., Kraft, M.D., Sharp, T.G., Golden, D.C., Ming, D.W., Christensen, P.R., & Ruf, S.W. (2011). Detection of allophane on Mars through orbital and in situ thermal infrared spectroscopy. Lunar and Planetary Science XLII. Lunar and Planetary Institute, Houston, #2145(abstract).Google Scholar
Rampe, E. B., Kraft, M. D., Sharp, T. G., Golden, D. C., Ming, D. W., & Christensen, P. R. (2012). Allophane detection on Mars with Thermal Emission Spectrometer data and implications for regional-scale chemical weathering processes. Geology, 40, 995998.CrossRefGoogle Scholar
Rampe, E. B., Morris, R. V., Archer, P. D., Agresti, D. G., & Ming, D. W. (2016). Recognizing sulfate and phosphate complexes chemisorbed onto nanophase weathering products on Mars using in situ and remote observations. American Mineralogist, 101, 678689.CrossRefGoogle Scholar
Rampe, E. B., Ming, D. W., Blake, D. F., Bristow, T. F., Chipera, S. J., Grotzinger, J. P., Morris, R. V., Morrison, S. M., Vaniman, D. T., Yen, A. S., Achilles, C. N., Craig, P. I., Des Marais, D. J., Downs, R. T., Farmer, J. D., Fendrich, K. V., Gellert, R., Hazen, R. M., Kah, L. C., ... Thompson, L. M. (2017). Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth and Planetary Science, Letters, 471, 172185.CrossRefGoogle Scholar
Rampe, E. B., Lapotre, M. G. A., Bristow, T. F., Arvidson, R. E., Morris, R. V., Achilles, C. N., Weitz, C., Blake, D. F., Ming, D. W., Morrison, S. M., Vaniman, D. T., Chipera, S. J., Downs, R. T., Grotzinger, J. P., Hazen, R. M., Peretyazhko, T. S., Sutter, B., Tu, V., Yen, A. S., ... Treiman, A. H. (2018). Sand mineralogy within the Bagnold Dunes, Gale Crater, as Observed in situ and from orbit. Geophysical Research Letters, 45, 94889497.CrossRefGoogle Scholar
Rampe, E. B., Blake, D.F., Bristow, T.F., Ming, D.W., Vaniman, D.T., Morris, R.V., Achilles, C.N., Chipera, S.J., Morrison, S.M., Tu, V.M., Yen, A.S., Castle, N., Downs, G.W., Downs, R.T., Grotzinger, J.P., Hazen, R.M., Treiman, A.H., Peretyazhko, T.S., Des Marais, D.J., Walroth, R.C., Craig, P.I., Crisp, J.A., Lafuente, B., Morookian, J.M., Sarrazin, P.C., Thorpe, M.T., Bridges, J.C., Edgar, L.A., Fedo, C.M., Freissinet, C., Gellert, R., Mahaffy, P.R., Newsom, H.E., Johnson, J.R., Kah, L.C., Siebach, K.L., Schieber, J., Sun, V.Z., Vasavada, A.R., Wellington, D., Wiens, R.C., and the MSL Science Team. (2020). Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity. Geochemistry, 80, 125605.CrossRefGoogle Scholar
Rimstidt, J. D., & Barnes, H. L. (1980). The kinetics of silicawater reactions. Geochimica et Cosmochimica Acta, 44, 16831700.CrossRefGoogle Scholar
Rozalen, M. L., Huertas, F. J., Brady, P. V., Cama, J., GarcíaPalma, S., & Linares, J. (2008). Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25°C. Geochimica et Cosmochimica Acta, 72, 42244253.CrossRefGoogle Scholar
Sanders, R. L., Washton, N. M., & Mueller, K. T. (2012). Atomic-level studies of the depletion in reactive sites during clay mineral dissolution. Geochimica et Cosmochimica Acta, 92, 100116.CrossRefGoogle Scholar
Shayan, A. (1984). Hisingerite material from a basalt quarry near Geelong, Victoria, Australia. Clays and Clay Minerals, 32, 272278.CrossRefGoogle Scholar
Shayan, A., Sanders, J. V., & Lancucki, C. J. (1988). Hydrothermal alterations of hisingerite material from a basalt quarry near Geelong, Victoria, Australia. Clays and Clay Minerals, 36, 327336.CrossRefGoogle Scholar
Singer, R. B. (1985). Spectroscopic observation of Mars. Advances in Space Research, 5, 5968.CrossRefGoogle Scholar
Smith, R. J., Rampe, E. B., Horgan, B. H. N., & Dehouck, E. (2018). Deriving amorphous component abundance and composition of rocks and sediments on Earth and Mars. Journal of Geophysical Research, Planets, 123, 24852505.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Ruff, S., Gellert, R., Morris, R. V., Ming, D. W., Crumpler, L., Farmer, J. D., Des Marais, D. J., Yen, A., McLennan, S. M., Calvin, W., Bell, J. F. III, Clark, B. C., Wang, A., McCoy, T. J., Schmidt, M. E., & de Souza, P.A. Jr. (2008). Detection of silica-rich deposits on Mars. Science, 320, 10631067.CrossRefGoogle ScholarPubMed
Steiner, M. H., Hausrath, E. M., Elwood-Madden, M. E., Tschauner, O., Ehlmann, B. L., Olsen, A. A., Gainey, S. R., & Smith, J. S. (2016). Dissolution of nontronite in chloride brines and implications for the aqueous history of Mars. Geochimica et Cosmochimica Acta, 195, 259276.CrossRefGoogle Scholar
Stillings, L. L., & Brantley, S. L. (1995). Feldspar dissolution at 25°C and pH 3: reaction stoichiometry and the effect of cations. Geochimica et Cosmochimica Acta, 59, 14831496.CrossRefGoogle Scholar
Sun, Z., Zhou, H., Glasby, G., Yang, Q., Yin, X., Li, J., & Chen, Z. (2011). Formation of Fe-Mn-Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin. Journal of Asian Earth Sciences, 43, 6476.CrossRefGoogle Scholar
Sutter, B., McAdam, A. C., Mahaffy, P. R., Ming, D. W., Edgett, K. S., Rampe, E. B., Eigenbrode, J. L., Franz, H. B., Freissinet, C., Grotzinger, J. P., Steele, A., House, C. H., Archer, P. D., Malespin, C. A., Navarro-González, R., Stern, J. C., Bell, J. F., Calef, F. J., Gellert, R., ... Yen, A. S. (2017). Evolved gas analyses of sedimentary rocks and eolian sediment in Gale crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune. Journal of Geophysical Research, Planets, 122, 25742609.CrossRefGoogle Scholar
Theng, B. K. G., Russell, M., Churchman, G. J., & Parfitt, R. L. (1982). Surface properties of allophane, halloysite, and imogolite. Clays and Clay Minerals, 30, 143149.CrossRefGoogle Scholar
Tosca, N. J., Knoll, A. H., & McLennan, S. M. (2008). Water activity and the challenge for life on early Mars. Science, 320, 12041207.CrossRefGoogle ScholarPubMed
Treiman, A. H., Bish, D. L., Vaniman, D. T., Chipera, S. J., Blake, D. F., Ming, D. W., Morris, R. V., Bristow, T. F., Morrison, S. M., Baker, M. B., Rampe, E. B., Downs, R. T., Filiberto, J., Glazner, A. F., Gellert, R., Thompson, L. M., Schmidt, M. E., Le Deit, L., Wiens, R. C., ... Yen, A. S. (2016). Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater). Journal of Geophysical Research, Planets, 121, 75106.CrossRefGoogle ScholarPubMed
Tu, V. M., Hausrath, E. M., Tschauner, O., Iota, V., & Egeland, G. W. (2014). Dissolution rates of amorphous Al- and Fe-phosphates and their relevance to phosphate mobility on Mars. American Mineralogist, 99, 12061215.CrossRefGoogle Scholar
Van der Gaast, S. J., & Vaars, A. J. (1981). A method to eliminate the background in X-ray-diffraction patterns of oriented clay mineral samples. Clay Minerals, 16, 383393.CrossRefGoogle Scholar
Vaniman, D. T., Bish, D. L., Ming, D. W., Bristow, T. F., Morris, R. V., Blake, D. F., Chipera, S. J., Morrison, S. M., Treiman, A. H., Rampe, E. B., Rice, M., Achilles, C. N., Grotzinger, J. P., McLennan, S. M., Williams, J., Bell, J. F. III, Newsom, H. E., Downs, R. T., Maurice, S., Sarrazin, P., Yen, A. S., Morookian, J. M., Farmer, J. D., Stack, K., Milliken, R. E., Ehlmann, B. L., Sumner, D. Y., Berger, G., Crisp, J. A., Hurowitz, J. A., Anderson, R., Des Marais, D. J., Stolper, E. M., Edgett, K. S., Gupta, S., Spanovich, N., & the MSL Science Team. (2014). Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science, 343, 1243480.CrossRefGoogle ScholarPubMed
Vaniman, D. T., Martínez, G. M., Rampe, E. B., Bristow, T. F., Blake, D. F., Yen, A. S., Ming, D. W., Rapin, W., Meslin, P.-Y., Morookian, J. M., Downs, R. T., Chipera, S. J., Morris, R. V., Morrison, S. M., Treiman, A. H., Achilles, C. N., Robertson, K., Grotzinger, J. P., Hazen, R. M., Wiens, R. C., & Sumner, D. Y. (2018). Gypsum, bassanite, and anhydrite at Gale crater, Mars. American Mineralogist, 103, 10111020.CrossRefGoogle Scholar
Velbel, M. A. (1993). Constancy of silicate-mineral weathering-rate ratios between natural and experimental weathering: implications for hydrologic control of differences in absolute rates. Chemical Geology, 105, 8999.CrossRefGoogle Scholar
Wada, K. (1989). Allophane and imogolite. in: Minerals in Soil Environments (J. B. Dixon and S. B. Weed, (Eds.), Soil Science Society of America, Madison, WI, USA. (pp. 10511087).Google Scholar
Wada, K., & Yoshinaga, N. (1969). The structure of imogolite. American Mineralogist, 54, 5071.Google Scholar
Weitz, C. M., Bishop, J. L., Baker, L. L., & Berman, D. C. (2014). Fresh exposures of hydrous Fe-bearing amorphous silicates on Mars. Geophysical Research Letters, 41, 87448751.CrossRefGoogle Scholar
Welch, S. A., & Ullman, W. J. (2000). The temperature dependence of bytownite feldspar dissolution in neutral aqueous solutions of inorganic and organic ligands at low temperature (5–35°C). Chemical Geology, 167, 337354.CrossRefGoogle Scholar
Wogelius, R. A., & Walther, J. V. (1991). Olivine dissolution at 25°C: effects of pH, CO2, and organic acids. Geochimica et Cosmochimica Acta, 55, 943954.CrossRefGoogle Scholar
Yen, A. S., Ming, D. W., Vaniman, D. T., Gellert, R., Blake, D. F., Morris, R. V., Morrison, S. M., Bristow, T. F., Chipera, S. J., Edgett, K. S., Treiman, A. H., Clark, B. C., Downs, R. T., Farmer, J. D., Grotzinger, J. P., Rampe, E. B., Schmidt, M. E., Sutter, B., & Thompson, L. M. (2017). Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale crater, Mars. Earth and Planetary Science Letters, 471, 186198.CrossRefGoogle Scholar
Zhu, C., Liu, Z., Zhang, Y., Wang, C., Scheafer, A., Lu, P., Zhang, G., Georg, R. B., Yuan, H., & Rimstidt, J. D. (2016). Measuring silicate mineral dissolution rates using Si isotope dating. Chemical Geology, 445, 146163.CrossRefGoogle Scholar
Supplementary material: File

Ralston et al. supplementary material
Download undefined(File)
File 9.5 MB