Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T03:13:32.789Z Has data issue: false hasContentIssue false

Development of Kinetic Parameters for Nitric Acid Leaching of Phlogopite and the Characterization of Solid Products

Published online by Cambridge University Press:  01 January 2024

Cheri M. Favel
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, the Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0002, South Africa
Barend J. du Plessis*
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, the Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0002, South Africa

Abstract

South Africa is a net importer of fertilizer products, importing all of its potassium, as well as 60–70% of its nitrogen requirements. Thus, domestic prices are impacted significantly by international prices, shipping costs, and exchange rates. Producing these fertilizers locally would be far more economical. Phlogopite, a rich source of potassium, is discarded in large quantities during mining operations; the objective of the present study, therefore, was to determine the acid-leaching characteristics and behavior of phlogopite as a means of releasing potassium. Phlogopite samples were leached with nitric acid (source of nitrogen for fertilizers) at various concentrations, temperatures, and reaction times. The feed phlogopite and leached residue samples corresponding to conversions of 14% (LP1), 44% (LP2), and 100% (LP3) were collected and analyzed using X-ray fluorescence spectroscopy (XRF), X-ray diffractometry (XRD), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), Brunauer–Emmett–Teller surface area and porosity analysis (BET), thermogravimetric analysis (TGA), and field emission gun-scanning electron microscopy (FEG-SEM). The feed phlogopite was highly crystalline. The absence of defects in the lattice meant that the motion of H+ atoms penetrating into the lattice was restricted, suggesting internal diffusion-controlled leaching. Furthermore, results obtained from the various analytical techniques corroborated each other in terms of the release of cations during leaching. All leaching experiments were conducted batchwise, in a closed system. The gravimetric data from the experiments were used to identify a suitable model which predicts accurately the leaching behavior. The reaction was found to be internal diffusion-controlled, and the D1 model, which represents one-dimensional diffusion through a flat plate, predicts the leaching behavior most accurately. The observed activation energies (Ea) and pre-exponential constants (k0) varied with initial nitric acid concentration ([H+]0).

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrhenius, S. (1889). Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren. Zeitschrift FÜr Physikalische Chemie, 4(1), 226248.CrossRefGoogle Scholar
Awazu, K. (1999). Oscillator strength of the infrared absorption band near 1080 cm-1 in SiO2 films. Journal of Non-Crystalline Solids, 260, 242244.CrossRefGoogle Scholar
Baksheev, I., Damian, F., Damian, G., Prokof'ev, V., Bryzgalov, I., & Marushchenko, L. (2016). Chemical composition of phlogopite, tourmaline and illite from hydrothermal alterations of the Nistru deposit, Baia Mare, Romania. Carpathian Journal of Earth And Environmental Sciences, 11, 547564.Google Scholar
Balland, C., Poszwa, A., Leyval, C., & Mustin, C. (2010). Dissolution rates of phyllosilicates as a function of bacterial metabolic diversity. Geochimica et Cosmochimica Acta, 74, 54785493.CrossRefGoogle Scholar
Beran, A. (2002). Infrared spectroscopy of micas. Reviews in Mineralogy and Geochemistry, 46(1), 351369.CrossRefGoogle Scholar
Chute, J. H., & Quirk, J. P. (1967). Diffusion of potassium from mica-like clay minerals. Nature, 213, 11561157.CrossRefGoogle Scholar
Ciullo, P. A. (1996). Mica. In Industrial Minerals and Their Uses - A Handbook and Formulary (pp. 4548). Noyes Publication.Google Scholar
Costa, T. M. H., Gallasa, M. R., Benvenutti, E. V., & da Jornada, J. A. H. (1997). Infrared and thermogravimetric study of high-pressure consolidation in alkoxide silica gel powders. Journal of Non-Crystalline Solids, 220, 195201.CrossRefGoogle Scholar
da Silva, A. D. A. S., França, S. C. A., Ronconi, C. M., Sampaio, J. A., da Luz, A. B., & de Sousa da Silva, D. (2008). A study on the application of phlogopite as a slow release potassium fertilizer. Institute of Chemistry - Federal University of Rio de Janeiro.Google Scholar
del Rey-Perez-Caballero, F., & Poncelet, G. (2000). Preparation and characterization of microporous 18 Å Al-pillared structures from natural phlogopite micas. Microporous and Mesoporous Materials, 41, 169181.CrossRefGoogle Scholar
Deysel, H. M., Berluti, K., du Plessis, B. J., & Focke, W. W. (2020). Glass foams from acid-leached phlogopite waste. Journal of Materials Science, 55, 80508060.CrossRefGoogle Scholar
Dockrey, J. & Mattson, B. (2016). Effects of pH on the Arrhenius paradigm. In Paul, M. (Eds.) Proceedings IMWA. Presented at the Mining Meets Water - Conflicts and Solutions (pp. 299305), Freiberg/Germany.Google Scholar
Dybkov, V.I. (2002). Reaction Diffusion and Solid State Chemical Kinetics. Kyiv: The IPMS Publications.Google Scholar
Dye, D. W., & Hartshorn, L. (1924). The dielectric properties of mica. Proceedings of the Physical Society of London, 37, 4257.CrossRefGoogle Scholar
Eriksson, S.C. (1982). Aspects of the petrochemistry of the Phalaborwa complex, northeastern Transvaal, South Africa. University of the Witwatersrand, South Africa.Google Scholar
Farmer, V.C. (1974). The Infrared Spectra of Minerals. London: Mineralogical Society of Great Britain and Ireland.CrossRefGoogle Scholar
Fogler, H. S. (2006). Rate Laws and Stoichiometry. In Elements of Chemical Reaction Engineering (pp. 9192). Prentice-Hall.Google Scholar
Foster, M. (1960). Interpretation of the Composition of Trioctahedral Micas. United States Department of the Interior, Washington.CrossRefGoogle Scholar
Giletti, B. J., & Anderson, T. F. (1975). Studies in diffusion, II. Oxygen in phlogopite mica. Earth and Planetary Science Letters, 28, 225233.CrossRefGoogle Scholar
Härkönen, M. A., & Keiski, R. L. (1984). Porosity and surface area of acid-leached phlogopite: The effect of leaching conditions and thermal treatment. Colloids and Surfaces, 11, 323339.CrossRefGoogle Scholar
Heckroodt, R. O. (1991). Clay and clay materials in South Africa. Journal of the South African Institute of Mining and Metallurgy, 91, 343363.Google Scholar
Jenkins, D. M. (1989). Empirical study of the infrared lattice vibrations (1100-350 cm–1) of phlogopite. Physics and Chemistry of Minerals, 16, 408414.CrossRefGoogle Scholar
Kalinowski, B. E., & Schweda, P. (1996). Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature. Geochimica et Cosmochimica Acta, 60, 367385.CrossRefGoogle Scholar
Kaviratna, H., & Pinnavaia, T. J. (1994). Acid hydrolysis of octahedral Mg sites in 2: 1 layered silicates: An assessment of edge attack and gallery access mechanisms. Clays and Clay Minerals, 42, 717723.CrossRefGoogle Scholar
Khalighi, M., & Minkkinen, P. (1989). The evaporation of potassium from phlogopite. Journal of Thermal Analysis, 35, 379390.CrossRefGoogle Scholar
Khawam, A., & Flanagan, D. R. (2006). Solid-state kinetic models: basics and mathematical fundamentals. The Journal of Physical Chemistry, 110, 1731517328.CrossRefGoogle ScholarPubMed
Khawam, A., & Flanagan, D. R. (2005). Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. The Journal of Physical Chemistry, 109, 1007310080.CrossRefGoogle ScholarPubMed
Kloprogge, J. T., & Frost, R. L. (1999). Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites. Journal of Solid State Chemistry, 146, 506515.CrossRefGoogle Scholar
Kotz, J. C., Treichel, P. M., & Townsend, J. R. (2012). Chemistry and Chemical Reactivity (8th ed.). Brooks/Cole Cengage Learning.Google Scholar
Kraevskaya, S. N., Belomestnova, É. N., & Zhuravlev, G. I. (1985). Glass crystalline materials based on phlogopite. Glass and Ceramics, 42, 396399.CrossRefGoogle Scholar
Kuwahara, Y., & Aoki, Y. (1995). Dissolution process of phlogopite in acid solutions. Clays and Clay Minerals, 43, 3950.CrossRefGoogle Scholar
Leonard, R. A., & Weed, S. B. (1970). Mica weathering rates as related to mica type and composition. Clays and Clay Minerals, 18, 187195.CrossRefGoogle Scholar
Levenspiel, O. (1999). Fluid-Particle Reactions: Kinetics. In Chemical Reaction Engineering (pp. 566588). Wiley.Google Scholar
Lin, F. C., & Clemency, C. V. (1981). Dissolution kinetics of phlogopite. I. Closed system. Clays and Clay Minerals, 29, 101106.Google Scholar
Liong, K. K., Wells, P. A., & Foster, N. R. (1991). Diffusion in supercritical fluids. The Journal of Supercritical Fluids, 4, 91108.CrossRefGoogle Scholar
Madejová, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: Infrared methods. Clays and Clay Minerals, 49, 410432.CrossRefGoogle Scholar
Mamy, J. (1970). Extraction of interlayer K from phlogopite specific effects of cations role of Na and H concentrations in extraction solutions. Clays and Clay Minerals, 18, 157163.CrossRefGoogle Scholar
Mendelovici, E., Frost, R. L., & Kloprogge, J. T. (2001). Modification of chrysotile surface by organosilanes: An IR-photoacoustic spectroscopy study. Journal of Colloid and Interface Science, 238, 273278.CrossRefGoogle ScholarPubMed
Milliken, K. L., Rudnicki, M., Awwiller, D. N., & Zhang, T. (2013). Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania Geohorizon. AAPG Bulletin, 97(2), 177200.CrossRefGoogle Scholar
Mortland, M. M. (1958). Kinetics of potassium release from biotite. Soil Science Society of America, 22, 503508.CrossRefGoogle Scholar
Niu, H., Kinnunen, P., Sreenivasan, H., Adesanya, E., & Illikainen, M. (2020). Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential. Minerals Engineering, 151, 106331.CrossRefGoogle Scholar
Ocaña, M., Fornés, V., & Serna, C. J. (1989). The variability of the infrared powder spectrum of amorphous SiO2. Journal of Non-Crystalline Solids, 107, 187192.CrossRefGoogle Scholar
Okada, K., Arimitsu, N., Kameshima, Y., Nakajima, A., & MacKenzie, K. J. D. (2006). Solid acidity of 2: 1 type clay minerals activated by selective leaching. Applied Clay Science, 31, 185193.CrossRefGoogle Scholar
Okada, K., Arimitsu, N., Kameshima, Y., Nakajima, A., & MacKenzie, K. J. D. (2005). Preparation of porous silica from chlorite by selective acid leaching. Applied Clay Science, 30, 116124.CrossRefGoogle Scholar
Okada, K., Nakazawa, N., Kameshima, Y., Yasumori, A., Temuujin, J., MacKenzie, K. J. D., & Smith, M. E. (2002). Preparation and porous properties of materials prepared by selective leaching of phlogopite. Clays and Clay Minerals, 50, 624632.CrossRefGoogle Scholar
Perry, R. H., & Green, D. W. (1999). Perry's Chemical Engineers' Handbook (7th ed.). McGraw-Hill.Google Scholar
Poling, B. E., Prausnitz, J. M., & O'Connell, J. P. (2001). Diffusion Coefficients. In The Properties of Gases and Liquids (pp. 11.111.55). McGraw-Hill Professional.Google Scholar
Porteus, M. (2018). History and Future of Phosphate Mining and Beneficiation in South Africa. In Beneficiation of phosphates VIII. Presented at the Engineering Conferences International ECI Digital Archives. South Africa: Foskor.Google Scholar
Reed, M. G., & Scott, A. D. (1962). Kinetics of potassium release from biotite and muscovite in sodium tetraphenylboron solutions. Soil Science Society of America Journal, 26, 437440.CrossRefGoogle Scholar
Reguir, E., Chakhmouradian, A., Halden, N., Malkovets, V., & Yang, P. (2009). Major- and trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. Lithos, 112, 372384.CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., D'yakonov, Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., Koval', P. W., Müller, G., Neiva, A. M. R., Radoslovich, E. W., Robert, J.-L., Sassi, F. P., Takeda, H., Weiss, Z., & Wones, D. R. (1998). Nomenclature of the micas. Clays and Clay Minerals, 46, 586595.CrossRefGoogle Scholar
Ropp, R.C. (2003) Solid State Chemistry, 1st ed. New Jersey, USA: Elsevier Science B.V.Google Scholar
Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., & Unger, K. K. (1994). Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 66, 17391758.CrossRefGoogle Scholar
Said, A., Zhang, Q., Qu, J., Liu, Y., Lei, Z., Hu, H., & Xu, Z. (2018). Mechanochemical activation of phlogopite to directly produce slow-release potassium fertilizer. Applied Clay Science, 165, 7781.CrossRefGoogle Scholar
Schmalzried, H. (1995). Chemical Kinetics of Solids. VCH Verlagsgesellschaft, Publishers.CrossRefGoogle Scholar
Schoeman, J. J. (1989). Mica and vermiculite in South Africa. Journal of the Southern African Institute of Mining and Metallurgy, 89, 112.Google Scholar
Taylor, A. S., Blum, J. D., Lasaga, A. C., & MacInnis, I. N. (2000). Kinetics of dissolution and Sr release during biotite and phlogopite weathering. Geochimica et Cosmochimica Acta, 64, 11911208.CrossRefGoogle Scholar
Temuujin, J., Jadambaa, T. S., Burmaa, G., Erdenechimeg, S. H., Amarsanaa, J., & MacKenzie, K. J. D. (2004). Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceramics International, 30, 251255.CrossRefGoogle Scholar
Temuujin, J., Okada, K., & MacKenzie, K. J. D. (2003). Preparation of porous silica from vermiculite by selective leaching. Applied Clay Science, 22, 187195.CrossRefGoogle Scholar
Üçgül, E., & Girgin, $ID. (2002). Chemical exfoliation characteristics of Karakoç phlogopite in hydrogen peroxide solution. Turkish Journal of Chemistry, 26, 431440.Google Scholar
van Straaten, P. (2002). Rocks for Crops: Agrominerals of sub-Saharan Africa. ICRAF.Google Scholar
Verbeek, C. J. R. (2002). Highly filled polyethylene/phlogopite composites. Materials Letters, 52, 453457.CrossRefGoogle Scholar
von Reichenbach, H. G. (1969). Potassium release from muscovite as influenced by particle size. Clays and Clay Minerals, 17, 2329.CrossRefGoogle Scholar
Wypych, F., Adad, L. B., Mattoso, N., Marangon, A. A. S., & Schreiner, W. H. (2005). Synthesis and characterization of disordered layered silica obtained by selective leaching of octahedral sheets from chrysotile and phlogopite structures. Journal of Colloid and Interface Science, 283, 107112.CrossRefGoogle ScholarPubMed
Xue, B., Zhang, J., Tang, X., Yang, C., Chen, Q., Man, X., & Dang, W. (2016). Micro-pore structure and gas accumulation characteristics of Shale in the Longmaxi Formation, Northwest Guizhou. Petroleum Research, 1, 191204.CrossRefGoogle Scholar