Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T11:32:25.931Z Has data issue: false hasContentIssue false

Cytotoxicity and Biokinetic Evaluation of Clay Minerals

Published online by Cambridge University Press:  01 January 2024

Soo-Jin Choi*
Affiliation:
Division of Applied Food System, Major of Food Science & Technology, Seoul Women’s University, Hwarang-ro 621, Nowon-gu, Seoul 01797, Republic of Korea

Abstract

Clay minerals, such as layered double hydroxide (LDH) and montmorillonite (MMT), have attracted a great deal of attention for biological applications. Along with the rapid development of nanotechnology, public concern about the potential toxicity of nanoparticles is growing. In the present work, cytotoxicity of LDH and MMT was assessed in terms of inhibition of cell proliferation, generation of oxidative stress, and induction of inflammation response. Moreover, the biokinetics of LDH and MMT were evaluated; biokinetics provides information about in vivo absorption, distribution, and excretion kinetics. The results demonstrated that both LDH and MMT inhibited cell proliferation at relatively large concentrations and after long exposure time compared to other inorganic nanoparticles, although they generated reactive oxygen species (ROS). LDH induced pro-inflammatory cytokines in a size-dependent manner. Biokinetic study revealed that, after single-dose oral administration to mice, both LDH and MMT had extremely slow oral rates of absorption and did not accumulate in any specific organ. All the results suggest great potential of clay minerals for biological application at safe levels.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baek, M. & Choi, S. J. (2012). Effect of orally administered glutathi-one-montmorillonite hybrid systems on tissue distribution. Journal of Nanomaterials, 2012, 469372.Google Scholar
Baek, M., Kim, I. S., Yu, J., Chung, H. E., Choy, J. H., & Choi, S. J. (2011). Effect of different forms of anionic nanoclays on cytotoxicity. Journal of Nanoscience Nanotechnology, 11, 18031806.CrossRefGoogle ScholarPubMed
Baek, M., Choy, J. H., & Choi, S. J. (2012a). Montmorillonite intercalated with glutathione for antioxidant delivery: synthesis, characterization, and bioavailability evaluation. International Journal of Pharmaceutics, 425, 2934.CrossRefGoogle Scholar
Baek, M., Chung, H. E., Yu, J., Lee, J. A., Kim, T. H., Oh, J. M., Lee, W. J., Paek, S. M., Lee, J. K., Jeong, J., Choy, J. H., & Choi, S. J. (2012b). Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. International Journal Nanomedicine, 7, 30813097.CrossRefGoogle Scholar
Baek, M., Lee, J. A., & Choi, S. J. (2012c). Toxicological effects of a cationic clay, montmorillonite in vitro and in vivo. Molecular & Cellular Toxicology, 8, 95101.CrossRefGoogle Scholar
Chan, J. Y. W., Tsui, J. C. C., Law, P. T. W., So, W. K. W., Leung, D. Y. P., Sham, M. M. K., Tsui, S. K. W., & Chan, C. W. H. (2018). RNA-Seq revealed ATF3-regulated inflammation induced by silica. Toxicology, 393, 3441.CrossRefGoogle ScholarPubMed
Choi, S. J., Choi, G. E., Oh, J. M., Oh, Y. J., Park, M. C., & Choy, J. H. (2010). Anticancer drug encapsulated in inorganic lattice can overcome drug resistance. Journal of Materials Chemistry, 20, 94639469.CrossRefGoogle Scholar
Choi, S. J. & Choy, J. H. (2011a). Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine, 6, 803814.CrossRefGoogle ScholarPubMed
Choi, S. J. & Choy, J. H. (2011b). Effect of physico-chemical parameters on the toxicity of inorganic nanoparticles. Journal of Materials Chemistry, 21, 55475554.CrossRefGoogle Scholar
Choi, S. J. & Choy, J. H. (2014). Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. International Journal of Nanomedicine, 9, 261269.Google Scholar
Choi, S.J. Oh, J. M., & Choy, J. H. (2008a). Human-related application and nanotoxicology of inorganic particles: complementary aspects. Journal of Materials Chemistry, 18, 615620.CrossRefGoogle Scholar
Choi, S. J., Oh, J. M., & Choy, J. H. (2008b). Safety aspect of inorganic layered nanoparticles: size-dependency in vitro and in vivo. Journal of Nanoscience Nanotechnology, 8, 52975301.CrossRefGoogle ScholarPubMed
Choi, S. J., Oh, J. M., & Choy, J. H. (2009). Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. Journal of Inorganic Biochemistry, 103, 463471.CrossRefGoogle ScholarPubMed
Choi, S. J., Paek, H. J., & Yu, J. (2015). Oxidative stress by layered double hydroxide nanoparticles via an SFK-JNK and p38-NFkappaB signaling pathway mediates induction of interleukin-6 and interleukin-8 in human lung epithelial cells. International Journal of Nanomedicine, 10, 32173229.CrossRefGoogle Scholar
Choy, J. H., Choi, S. J., Oh, J. M., & Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36, 122132.CrossRefGoogle Scholar
Chung, H. E., Park, D. H., Choy, J. H., & Choi, S. J. (2012). Intracellular trafficking pathway of layered double hydroxide nanoparticles in human cells: Size-dependent cellular delivery. Applied Clay Science, 65–66, 2430.CrossRefGoogle Scholar
Jo, M. R., Yu, J., Kim, H. J., Song, J. H., Kim, K. M., Oh, J. M., & Choi, S. J. (2016). Titanium dioxide nanoparticle-biomolecule interactions influence oral absorption. Nanomaterials (Basel), 6.CrossRefGoogle Scholar
Kim, M. K., Lee, J. A., Jo, M. R., & Choi, S. J. (2016). Bioavailability of silica, titanium dioxide, and zinc oxide nanoparticles in rats. Journal of Nanoscience and Nanotechnology, 16, 65806586.CrossRefGoogle Scholar
Ng, C. T., Yong, L. Q., Hande, M. P., Ong, C. N., Yu, L. E., Bay, B. H., & Baeg, G. H. (2017). Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. International Journal of Nanomedicine, 12, 16211637.CrossRefGoogle Scholar
Oh, J. M., Choi, S. J., Kim, S. T., & Choy, J. H. (2006). Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: Enhanced efficacy due to clathrin-mediated endocytosis. Bioconjugugate Chemistry, 17, 14111417.CrossRefGoogle Scholar
Oh, J. M., Choi, S. J., Lee, G. E., Kim, J. E., & Choy, J. H. (2009). Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chemistry – An Asian Journal, 4, 6773.CrossRefGoogle Scholar
Paek, H. J., Chung, H. E., Lee, J. A., Kim, M. K., Lee, Y. J., Kim, M. S., Kim, S. H., Maeng, E. H., Lee, J. K., Jeong, J., & Choi, S. J. (2014). Quantitative determination of silica nanoparticles in biological matrices and their pharmacokinetics and toxicokinetics in rats. Science of Advanced Materials, 6, 16051610.CrossRefGoogle Scholar
Paek, H.J., Lee, Y. J., Chung, H. E., Yoo, N. H., Lee, J. A., Kim, M. K., Lee, J. K., Jeong, J., & Choi, S. J. (2013). Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale, 5, 1141611427.CrossRefGoogle ScholarPubMed
Pongrac, I. M., Pavicic, I., Milic, M., Brkic Ahmed, L., Babic, M., Horak, D., Vinkovic Vrcek, I., & Gajovic, S. (2016). Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 11, 17011715.Google Scholar
Poulsen, S. S., Jackson, P., Kling, K., Knudsen, K. B., Skaug, V., Kyjovska, Z. O., Thomsen, B. L., Clausen, P. A., Atluri, R., Berthing, T., Bengtson, S., Wolff, H., Jensen, K. A., Wallin, H., & Vogel, U. (2016). Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology, 10, 12631275.CrossRefGoogle ScholarPubMed
Shvedova, A. A., Pietroiusti, A., Fadeel, B., & Kagan, V. E. (2012). Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicology and Applied Pharmacology, 261, 121133.CrossRefGoogle Scholar
Yu, J., Chung, H. E., & Choi, S. J. (2013). Acute oral toxicity and kinetic behaviors of inorganic layered nanoparticles. Journal of Nanomaterials. https://doi.org/10.1155/2013/628381.CrossRefGoogle Scholar
Zuo, D., Duan, Z., Jia, Y., Chu, T., He, Q., Yuan, J., Dai, W., Li, Z., Xing, L., & Wu, Y. (2016). Amphipathic silica nanoparticles induce cytotoxicity through oxidative stress mediated and p53 dependent apoptosis pathway in human liver cell line HL-7702 and rat liver cell line BRL-3A. Colloids and Surfaces B: Biointerfaces, 145, 232240.CrossRefGoogle Scholar