Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T10:55:01.428Z Has data issue: false hasContentIssue false

Crystal Chemistry of Hydrous Iron Silicate Scale Deposits at the Salton Sea Geothermal Field

Published online by Cambridge University Press:  28 February 2024

A. Manceau
Affiliation:
Environmental Geochemistry Group, LGIT-IRIGM, University of Grenoble and CNRS, BP53, 38041 Grenoble Cedex 9, France
Ph. Ildefonse
Affiliation:
Laboratoire de Minéralogie et Cristallographie, Tour 16, 4 place Jussieu, 75252 Paris Cedex 05, France
J. -L. Hazemann
Affiliation:
Environmental Geochemistry Group, LGIT-IRIGM, University of Grenoble and CNRS, BP53, 38041 Grenoble Cedex 9, France
A-M. Flank
Affiliation:
LURE, Bat. 209D, Université Paris-Sud, 91405 Orsay Cedex, France
D. Gallup
Affiliation:
Unocal Corporation, P.O. Box 76, Brea, California 92621

Abstract

The crystal chemistry of Fe-Si scales deposited from geothermal brines at Salton Sea, California, was studied by powder X-ray diffraction and spectroscopic techniques including infrared, 57Fe Mössbauer, 27Al and 29Si nuclear magnetic resonance (NMR), and Fe and Si K-edge extended X-ray absorption fine structure (EXAFS). Scales precipitated at near 250°C from dissolved ferrous iron and silicic acid are composed of hisingerite. This phase is shown to possess the same local structure as nontronite and is a poorly-crystallized precursor of the ferric smectite. A clear distinction can be made at the local scale between hisingerite and 2-line ferrihydrite because, even in their most disordered states, the former possesses a two-dimensional and the latter a three-dimensional anionic framework. At temperature near 100°C Fe-Si scales are a mix of Al-containing opal and hydrous ferrous silicate, whose local structure resembles minnesotaite and greenalite. This hydrous ferrous silicate is very well ordered at the local scale with an average Fe coordination about Fe atoms of 6 ± 1. The difference in crystallinity between the ferrous and ferric silicate scales was related to variations of growth rates of clay particles precipitated from ferrous and ferric salt solutions. The low crystallinity of the ferric smectite suggests that the oxidation of ferrous iron occurs before polymerization with silica.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W., 1984. Crystal chemistry of the true micas. In Micas. Bailey, S. W., ed. Reviews in Mineralogy 13: 1360.CrossRefGoogle Scholar
Blaauw, C., Stroink, G., Leiper, W., and Zentilli, M. 1979. Crystal-field properties of Fe in brucite Mg(OH)2. Phys. Stat. Sol. (b) 92: 639643.Google Scholar
Bonnin, D., Calas, G., Suquet, H., and Pezerat, H. 1985. Sites occupancy of Fe3+ in Garfield nontronite. Phys. Chetn. Miner. 12: 5564.Google Scholar
Brigatti, M. F., 1982. Hisingerite: A review of its crystal chemistry. In Development in Sedimentology, 35. Olphen, H. Van and Veniale, F., eds. Int. Clay Conf. Bologna and Pavia 1981. Amsterdam: Elsevier, 97110.Google Scholar
Brindley, G. W., and Brown, G. 1980. Crystal structures of clay minerals and their X-ray identification. London: Mineralogical Society, 495 pp.Google Scholar
Cardile, C. M., and Johnson, J. H. 1985. Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy. Clays & Clay Miner. 33: 295300.Google Scholar
Carlson, L., and Schwertmann, U. 1981. Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta 45: 421429.Google Scholar
Childs, C. W., 1992. Ferrihydrite: A review of structure, properties and occurrence in relation to soils. Z. Pflanzenernärk. Bodenk. 155: 441448.CrossRefGoogle Scholar
Childs, C. W., Matsue, N., and Yoshinaga, N. 1990. Ferrihydrite deposits in Paddy Races, Aso-Dani. Clay Sci. 8: 915.Google Scholar
Chukhrov, F. V., Zvyagin, B. B., Gorshkov, A. I., Ermilova, L., and Balashova, V. V. 1973. Ferrihydrite. Izvest. Akad. Nauk. SSSR (Ser. Geol.) 4: 23–33 (Russian). Trans. in Int. Geol. Rev. 16: 11311143.Google Scholar
Coey, J. M. D., 1984. Mössbauer spectroscopy of silicate minerals. In Mössbauer Spectroscopy Applied to Inorganic Chemistry. Long, S., ed. Plenum Press, 443509.Google Scholar
Coey, J. M. D., 1988. Magnetic properties of iron in soil iron oxides and clay minerals. In Iron in Soils and Clay Minerals. Stucki, J. W., Goodman, B. A., and Schwertmann, U., eds. NATO ASI series 217: 397466.Google Scholar
Combes, J. M., Manceau, A., and Calas, G. 1990. Formation of ferric oxides from aqueous solutions: a polyhedral approach by X-ray absorption spectroscopy. II. Hematite formation from ferric gels. Geochim. Cosmochim. Acta 54: 10831091.CrossRefGoogle Scholar
Decarreau, A., and Bonnin, D. 1986. Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: Experiments in partially reducing conditions. Clay Miner. 21: 861877.Google Scholar
Decarreau, A., Bonnin, D., Badaut-Trauth, D., Couty, R., and Kaiser, P. 1987. Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clay Miner. 22: 207223.Google Scholar
De Jong, B. H. W. S., Hoek, J. Van, Veeman, W. S., and Mason, D. V. 1987. X-ray diffraction and 29Si magic angle-spinning NMR of opals: Incoherent long- and short-range order in opal-CT. Amer. Mineral. 72: 11951203.Google Scholar
Donnay, G., Morimoto, N., Takeda, H., and Donnay, J. D. H. 1964. Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica. Acta Cryst. 17: 13691373.Google Scholar
Drits, V. A., Sakharov, B. A., Salyn, A. L., and Manceau, A. 1993. Structural model for ferrihydrite. Clay Miner. 28: 185208.Google Scholar
Eggleton, R. A., 1977. Nontronite: Chemistry and X-ray diffraction. Clay Miner. 12: 181194.Google Scholar
Eggleton, R. A., 1988. The application of micro-beam methods to iron minerals in soils. In Iron in Soils and Clay Minerals. Stucki, J. W., Goodman, B. A., and Schwertmann, U., eds. NATO ASI series 217: 165201.Google Scholar
Eggleton, R. A., Pennington, J. H., Freeman, R. S., and Threadgold, I. M. 1983. Structural aspects of hisingerite-neotecite series. Clay Miner. 18: 2131.Google Scholar
Farmer, V. C., 1991. Possible confusion between so-called ferrihydrites and hisingerites. Clay Miner. 27: 373378.Google Scholar
Farmer, V. C., Krishnamurti, G. S. R., and Huang, P. M. 1991. Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in a calcareous environment. Clays & Clay Miner. 39: 561571.Google Scholar
Farmer, V. C., McHardy, W. J., Elsass, F., and Robert, M. 1994. hk-ordering in aluminous nontronite and saponite synthesized near 90°C: Effects of synthesis conditions on nontronite composition and ordering. Clays & Clay Miner. 42: 180186.Google Scholar
Fleischer, M., Chao, G. Y., and Kato, A. 1975. New mineral names: Ferrihydrite (M.F.). Amer. Mineral. 60: 485486.Google Scholar
Gallup, D. L., 1989. Iron silicate scale formation and inhibition at the Salton Sea geothermal field. Geothermics 18: 97103.CrossRefGoogle Scholar
Gallup, D. L., 1993. The use of reducing agents for control of ferric silicate scale deposition. Geothermics 22: 3948.Google Scholar
Gallup, D. L., and Featherstone, J. L. 1994. Control of NORM deposition from Salton Sea geothermal brines. Geotherm. Sci. & Tech. 8: 112.Google Scholar
Gallup, D. L., and Reiff, W. M. 1991. Characterization of geothermal scale deposits by Fe-57 Mössbauer spectroscopy and complementary X-ray diffraction and infra-red studies. Geothermics 20: 207224.CrossRefGoogle Scholar
Goodman, B. A., Russell, J. D., Fraser, A. R., and Woodhams, F. W. D. 1976. A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays & Clay Miner. 24: 5359.Google Scholar
Gruner, J. W., 1935. The structural relationship of nontronite and montmorillonite. Amer. Mineral. 20: 475483.Google Scholar
Guggenheim, S., Bailey, S. W., Eggleton, R. A., and Wilkes, P. 1982. Structural aspects of greenalite and related minerals. Can. Min. 20: 118.Google Scholar
Guggenheim, S., and Eggleton, R. A. 1986. Structural modulations in iron rich and magnesium rich minerals. Can. Miner. 24: 477497.Google Scholar
Hazen, R. M., and Burnham, C. W. 1973. The crystal structures of one-layer phlogopite and annite. Amer. Mineral. 58: 889900.Google Scholar
Hoyer, D., Kitz, K., and Gallup, D. 1991. Salton Sea Unit 2. Innovations and successes. Geo. Res. Council Trans. 15: 355361.Google Scholar
Kohyama, N., and Sudo, T. 1975. Hisingerite occurring as a weathering product of iron-rich saponite. Clays & Clay Miner. 23: 215218.Google Scholar
Liebau, F., 1985. Structural Chemistry of Silicates. Structure, Bonding, and Classification. Berlin, Springer-Verlag.Google Scholar
Lindqvist, B., and Jansson, S. 1962. On the crystal chemistry of hisingerite. Amer. Mineral. 47: 13561362.Google Scholar
Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G., and Grimmer, A. R. 1980. Structural studies of silicates by solid-state high resolution 29Si NMR. J. Amer. Chem. Soc. 102: 76067607.Google Scholar
Manceau, A., 1990. Distribution of cations among the octahedra of phyllosilicates: Insight from EXAFS. Can. Miner. 28: 321328.Google Scholar
Manceau, A., Bonnin, D., Kaiser, P., and Frétigny, C. 1988. Polarized EXAFS of biotite and chlorite. Phys. Chem. Miner. 16: 180185.Google Scholar
Manceau, A., Bonnin, D., Stone, W. E. E., and Sanz, J. 1990. Distribution of Fe in the octahedral sheet of trioctahedral micas by polarized EXAFS. Comparison with NMR results. Phys. Chem. Miner. 17: 363370.Google Scholar
Manceau, A., and Calas, G. 1986. Ni-bearing clay minerals. 2. X-ray absorption study of Ni-Mg distribution. Clay Miner. 21: 341360.Google Scholar
Manceau, A., and Drits, V. A. 1993. Local structure of ferrihydrite and feroxyhite by EXAFS spectroscopy. Clay Miner. 28: 165184.Google Scholar
McKale, A. G., Veal, B. W., Paulikas, A. P., Chan, S. K., and Knapp, G. S. 1988. Improved ab initio calculations for extended absorption fine structure spectroscopy. J. Amer. Chem. Soc. 110: 37633768.Google Scholar
McKenzie, K. J. D., and Berezowski, R. M. 1980. Thermal and Mössbauer studies of iron-containing hydrous silicates. II. Hisingerite. Thermochim. Acta 41: 335355.CrossRefGoogle Scholar
Milkey, R. G., 1960. Infrared spectra of some tectosilicates. Amer. Mineral. 45: 9901007.Google Scholar
Miyamoto, H., 1976. The magnetic properties of Fe(OH)2. Mat. Res. Bull. 11: 329336.Google Scholar
Mizutani, T., Fukushima, Y., Okada, A., Kamigaito, O., and Kobayashi, T. 1991. Synthesis of 1: 1 and 2: 1 iron phyllosilicates and characterization of their iron state by Mössbauer spectroscopy. Clay & Clay Miner. 39: 381386.Google Scholar
Moenke, H. H. W., 1974. Silica, the three-dimensional silicates, borosilicates, and beryllium silicates. In The Infrared Spectra of Minerals. Farmer, V. C., ed. Mineralogical Society Monograph 4: 365382.Google Scholar
Mozzi, R. L., and Warre, B. E. 1969. The structure of Vitreous Silica. J. Appl. Cryst. 2: 164172.Google Scholar
Müller, D., Gessner, W., Behrens, H. J., and Scheler, G. 1981. Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high resolution 27Al NMR. Chem. Phys. Letters 79: 5962.Google Scholar
Noack, Y., Decarreau, A., and Manceau, A. 1986. Spectroscopic and isotopic evidence for low and high temperature origin of talc. Bull. Miner. 109: 253263.Google Scholar
Oles, A., Szytula, A., and Wanic, A. 1970. Neutron diffraction study of γFeOOH. Phys. Status Solidi 41: 173177.Google Scholar
Rozenson, I., and Heller-Kallai, L. 1977. Mössbauer spectra of dioctahedral smectites. Clays & Clay Miner. 25: 94101.Google Scholar
Schwertmann, U., and Murad, E. 1983. The effect of pH on the formation of goethite and hematite from ferrihydrite. Clay & Clay Miner. 31: 277284.Google Scholar
Schwertmann, U., and Thalmann, H. 1976. The influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Miner. 11: 189199.Google Scholar
Shayan, A., 1984. Hisingerite material from a basalt quarry near Geelong, Victoria, Australia. Clay & Clay Miner. 32: 272278.Google Scholar
Spadini, L., Manceau, A., Schindler, P. W., and Charlet, L. 1994. Structure and stability of Cd2+ surface complexes on ferric oxides. J. Coll. Interf. Sci. (in press).Google Scholar
Sudo, T., and Nakamura, T. 1952. Hisingerite from Jaan. Amer. Mineral. 37: 618621.Google Scholar
Teo, B. K., 1986. EXAFS: Basic Principles and Data Analysis. Inorganic Chemistry Concepts 9. Berlin, Springer-Verlag, 369 pp.Google Scholar
Vempati, R. K., and Loepert, R. H. 1985. Structure and transformation of siliceous ferrihydrites. American Society of Agronomy Annual Meeting. Agron. Abstracts, 152.Google Scholar
Vempati, R. K., and Loepert, R. H. 1989. Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite. Clay & Clay Miner. 37: 273279.CrossRefGoogle Scholar
Waychunas, G. A., Rea, B. A., Fuller, C. C., and Davis, J. A. 1993. Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57: 22512269.Google Scholar
Webb, J. A., and Finlayson, B. L. 1987. Incorporation of Al, Mg, and water in opal-A: Evidence from speleothems. Amer, Mineral. 72: 12041210.Google Scholar
Whelan, J. A., and Goldich, S. S. 1961. New data for hisingerite and neotocite. Amer. Mineral. 46: 14121423.Google Scholar