Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T02:01:43.419Z Has data issue: false hasContentIssue false

Crystal Chemical Differences in Al-Rich Smectites as Shown by Multivariate Analysis of Variance and Discriminant Analysis

Published online by Cambridge University Press:  02 April 2024

Alberto Alberti
Affiliation:
Istituto di Mineralogia e Petrologia dell'Università, Via S. Eufemia 19, 41100 Modena, Italy
Maria Franca Brigatti
Affiliation:
Istituto di Mineralogia e Petrologia dell'Università, Via S. Eufemia 19, 41100 Modena, Italy

Abstract

Multivariate analysis of variance and discriminant analysis were used to establish the crystal chemistry of several Al-rich smectites. The statistical analyses were carded out on 78 samples taken from the literature which were classified on the basis of their physicochemical properties. A strong discrimination exists between beidellites and montmorillonites, ‘non-ideal’ montmorillonites and ‘ideal’ montmorillonites, and Wyoming-type and Cheto-type montmorillonites. Of the Cheto-type montmorillonites, the Tatatilla-type samples are strongly discriminated, whereas the distinction between Chambers- and Otay-types is not strong. AlIV, AlVI, Fe, Mg, and Ca are generally important discriminating variables, whereas the tetrahedral portion of the layer charge, commonly used as a discriminating factor among these minerals, is only moderately significant.

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brigatti, M. F., 1983 Relationships between composition and structure in Fe-rich smectites Clay Miner. 18 177186.CrossRefGoogle Scholar
Brigatti, M. F. and Poppi, L., 1981 A mathematical model to distinguish the members of the dioctahedral smectite series Clay Miner. 16 8189.CrossRefGoogle Scholar
Byström Brusewitz, A. M. and Bailey, S. W., 1976 Studies on the Li test to distinguish between beidellite and montmorillonite Proc. Int. Clay Conf., Mexico City, 1975 Illinois Applied Publishing, Wilmette 419428.Google Scholar
Cooley, W. W. and Lohnes, P. R., 1971 Multivariate Statistical Methods New York Wiley.Google Scholar
Del Pennino, U., Mazzega, E., Valeri, S., Alietti, A., Brigatti, M. F. and Poppi, L., 1981 Interlayer water and swelling properties of monoionic montmorillonites J. Colloid Interface Sci. 84 301309.CrossRefGoogle Scholar
Fripiat, J., Chaussidon, J. and Jelli, A., 1971 Chimie-Physique des Phénomènes de Surface. Applications aux Oxydes et aux Silicates Paris Masson et Cie 260296.Google Scholar
Greene-Kelly, R., 1953 The identification of montmoril-lonoids in clays J. Soil Sci. 4 233237.CrossRefGoogle Scholar
Grim, R. E. and Kulbicki, G., 1961 Montmorillonite: high temperature reactions and classification Amer. Mineral. 46 13291369.Google Scholar
Landgraf, K. F., 1979 Röntgenographische Unterscheidung von Cheto- und Wyomingtyp bei Montmorilloniten nach den relativen Intensitäten der (00/) Serie des Glykol-komplexes Chemie der Erde 38 233244.Google Scholar
Landgraf, K. F., 1979 Unterscheidung von Cheto- und Wymoingtyp bei Montmorilloniten nach dem Lichtbrechungseffekt organischer Zwischenschichten Chemie der Erde 38 97104.Google Scholar
Mahalanobis, P. C., 1936 On the generalized distance in statistics Proc. Nat. Inst. Sci. India 12 4955.Google Scholar
Morrison, D. F., 1978 Multivariate Statistical Methods Auckland McGraw-Hill.Google Scholar
Nie, N. H., Hadlai Hull, C., Jenkins, J. G., Steinbrenner, K. and Bent, D. H., 1975 SPSS Statistical Package for the Social Sciences New York McGraw-Hill.Google Scholar
Novak, I. and Cicel, B., 1978 Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of cris-tallochemical composition Clays & Clay Minerals 26 341344.CrossRefGoogle Scholar
Poppi, L. and Brigatti, M. F., 1976 Cristallochimica e caratteristiche termiche di alcune montmorilloniti italiane Mineral. Petrogr. Acta 21 4352.Google Scholar
Prost, R. and Bailey, S. W., 1976 Interaction between adsorbed water molecules and the structure of clay mineral: hydration mechanism of smectites Proc. Int. Clay Conf., Mexico City, 1975 Illinois Applied Publishing, Wilmette 351359.Google Scholar
Ross, C. S. and Hendricks, S. B., 1945 Minerals of the montmorillonite group, their origin and relation to soils and clays U.S. Geol. Surv. Prof. Pap. 205 2379.Google Scholar
Rozenson, I. and Heller-Kallai, L., 1977 Mössbauer spectra of dioctahedral smectites Clays & Clay Minerals 25 94101.CrossRefGoogle Scholar
Russell, J. D. and Clark, D. R., 1978 The effect of Fe-for Si substitution on the è-dimension of nontronite Clay Miner. 13 133137.CrossRefGoogle Scholar
Schomburg, J., 1976 Dilatometrische Untersuchungen an dioktaedrischen Smektiten Chemie der Erde 35 192198.Google Scholar
Schultz, L. G., 1969 Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites Clays & Clay Minerals 17 115149.CrossRefGoogle Scholar
SPSS-X Statistical Algorithms, 1983 SPSS Inc., Chicago, Illinois.Google Scholar
Weir, A. H. and Greene-Kelly, R., 1962 Beidellite A mer. Mineral. 47 137146.Google Scholar
Wilks, S. S., 1932 Certain generalizations in the analysis of variance Biometrika 24 471494.CrossRefGoogle Scholar