Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T21:40:19.808Z Has data issue: false hasContentIssue false

Contribution to the Adsorption Mechanism of Acetamide and Polyacrylamide on to Clays

Published online by Cambridge University Press:  01 July 2024

Th. Stutzmann
Affiliation:
Centre de Recherches sur la Physico-Chimie des Surfaces Solides, 24, Avenue du President Kennedy, 68200 Mulhouse, France
B. Siffert
Affiliation:
Centre de Recherches sur la Physico-Chimie des Surfaces Solides, 24, Avenue du President Kennedy, 68200 Mulhouse, France

Abstract

While studying the retention of additives used in tertiary recovery of petroleum (waterflooding) on minerals present in a rock reservoir, an investigation has been undertaken into the adsorption mechanism of Polyacrylamides on to clays. The adsorption of amides and Polyacrylamides takes place exclusively on the external surfaces of the clay particles. The organic molecules are protonated on the surface and adsorbed by ionic forces. There is a linear relationship between the adsorption ratio and the polarizing power of the exchangeable cations of the clay mineral. The adsorption isotherms and the thermal analyses reveal the existence of two adsorption mechanisms: (i) a strong, irreversible adsorption, which corresponds to the formation of a monolayer of chemisorbed molecules, (ii) a more important adsorption of molecules retained by hydrogen bonding, which can be eliminated by heating at low temperature. The retention ratio in the irreversible process, which is practically identical both for acetamide and Polyacrylamide, is low (3 mg/g). It depends on the external cation exchange capacity (CEC) of the mineral and increases with the surface area. The Polyacrylamide adsorption depends on the physico-chemical characteristics of the macromolecule, more particularly on the CONH2/COOratio, which determines the extent of the carbon chain, and the molecular weight. The accessibility of the organic macromolecule to the clay particle is controlled by the preceding factors. The quantity of Polyacrylamide irreversibly adsorbed by clay minerals is important in the context of the use of the polymer on a petroleum field. It may be reduced to a minimum by working at low concentrations with a weakly hydrolyzed Polyacrylamide solution.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, N. and Badger, R. M., (1958) Infrared absorption associated with strong hydrogen bonds. J. Chem. Phys. 29, 11931194.CrossRefGoogle Scholar
Bellamy, L. J. (1958) The Infrared Spectra of Complex Molecules: John Wiley, New York.Google Scholar
Bontoux, J., Rambaud, A. and Reboul, B. (1972) Essais de floculation de sols de bentonite par un polyélectrolyte anionique: Trav. Soc. Pharm. Montpellier 32(1), 5158.Google Scholar
Brown, G. (1961) The X-ray Identification and Crystal Structure of Clay Minerals, pp. 195197: Min. Soc., Clay Minerals Group, London.Google Scholar
Burcik, E. J. (1965) A note on flow behavior of polyacrylamide solutions in porous media: Producers Monthly 29(6), 1426.Google Scholar
Burcik, E. J. (1967) Pseudo-dilatant flow of polyacrylamide solutions in porous media: Producers Monthly 31(3), 2736.Google Scholar
Burcik, E. J. and Walrond, K. W. (1968) Microgel in polyacrylamide solutions and its role in mobility control: Producers Monthly 82(9), 1228.Google Scholar
Chauveteau, G. (1973) Comportement rhéologique des solutions de polymère en milieu poreux: Séminaire I.F.P., Nov. 1973, RueilMalmaison.Google Scholar
Donner, H. E. and Mortland, M. M. (1969) Intermolecular interaction in montmorillonites NH–CO systems: Clays and Clay Minerals 17, 265270CrossRefGoogle Scholar
Farmer, W. J. and Ahlrichs, J. L. (1969) Infrared studies on the mechanism of adsorption of urea, methylurea and 1,1-dimethylurea by montmorillonite: Soil. Sci. Soc. Am. Proc. 33, 254258.CrossRefGoogle Scholar
Fieser, L. F. and Fieser, M. (1961) Advanced Organic Chemistry: Reinhold, New York.Google Scholar
Frenkel, M. (1974) Surface acidity of montmorillonites: Clays and Clay Minerals 22, 435442.CrossRefGoogle Scholar
Fripiat, J. J., Jelli, A., Poncelet, G. and Andre, J. (1965) Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonite and silicas: J. Phys. Chem. 69, 21852197.CrossRefGoogle Scholar
Fripiat, J. J., Cloos, P., Calicis, B. and Makay, K. (1966) Adsorption of amino-acids and peptides by montmorillonite: (I), Proc. Int. Clay Conf., Jerusalem, Vol. 1, pp. 233245.Google Scholar
Fulford, R. S. (1969) Adsorption of mobility control polymers: 25th Southwest Reg. Am. Chem. Soc. Mtg, Tulsa, OK.Google Scholar
Garrigou-Lagrange, C. (1974) Détermination du champ de force de valence et des modes normaux de vibration de l'acétamide: J. Chim. Phys. 71(2), 149154.CrossRefGoogle Scholar
Greene-Kelly, R. (1956) The sorption of saturated organic compounds by montmorillonite: Trans. Faraday Soc. 52, 12441251.CrossRefGoogle Scholar
Grim, R. E. (1968) Clay Mineralogy: McGraw-Hill, New York.Google Scholar
Hoffmann, R. and Brindley, G. W. (1962) Orientation and packing of aliphatic chain molecules on montmorillonite. Clay organic studies VI: Clays and Clay Minerals 9, 546556.Google Scholar
Kutzelnigg, W. and Mecke, R. (1962) Spektroskopiche Untersuchungen an Organischen Ionen: Spectrochim. Acta 18, 549560.CrossRefGoogle Scholar
Ledoux, R. L. and White, J. L. (1966) Infrared studies of hydrogen bonding between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide and urea: J. Colloid Interface Sci. 21, 127152.CrossRefGoogle Scholar
Michaels, A. S. (1954) Aggregation of suspensions by polyelectrolytes): Ind. Eng. Chem. 46(7), 14851490.CrossRefGoogle Scholar
Michaels, A. S. and Morelos, S. (1955) Polyelectrolyte adsorption by kaolinite: Ind. Eng. Chem. 47(9), 18011809.CrossRefGoogle Scholar
Mortland, M. M. (1966) Urea complexes with montmorillonite, an infrared adsorption study: Clay Minerals 6, 143156.CrossRefGoogle Scholar
Mortland, M. M. (1971) Reactions between clays and organic compounds: U.S.–Japan Seminar on Clay Organic Complexes, Kyoto.Google Scholar
Mortland, M. M. and Tahoun, S. A. (1966) Complexes with primary secondary and tertiary amides: II Soil Sci. 102(5), 314321.Google Scholar
Mortland, M. M. (1970) Clay-organic complexes and interactions: Advan. Agr. 22, 75117.CrossRefGoogle Scholar
Mungan, N., Smith, F. W. and Thompson, J. L. (1966) Some aspects of polymer floods: Trans. AIME 237, 11431161.Google Scholar
Mungan, N. (1969) Know your facts on polymer floods: Can. Petrol. 8(7), 2543.Google Scholar
Mungan, N. (1969) Le contrôle de la mobilité dans les injections de polymères: Rev. Inst. Franc. Petrole 24(2), 4358.Google Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P. (1971) The I.R. spectra of interlamellar kaolinite–amide complexes: (I) Clays and Clay Minerals 19, 8394.CrossRefGoogle Scholar
Patton, J. H. (1971) Prediction of polymer flood performance: Soc. Petrol. Engrs J. 11(1), 7284.CrossRefGoogle Scholar
Pauling, L. (1960) The Nature of Chemical Bond: Cornell University Press, New York.Google Scholar
Pye, D. J. (1964) Improved secondary recovery by control of water mobility: Trans. AIME 231, 911936.Google Scholar
Rakhimkulov, I. F. and Babalyan, P. I. (1969) Effectiveness of the use of polyacrylamide solution for water flooding: Neft. Khoz 47(3), 3660.Google Scholar
Ruehrwein, R. A. and Ward, D. W. (1952) Mechanism of clay aggregation by polyelectrolytes: Soil Sci. 73, 485492.CrossRefGoogle Scholar
Sandford, B. B. (1964) Laboratory and field studies of water floods using polymer solutions to increase oil recoveries: J. Petrol. Technol. Trans. AIME 231, 917922.CrossRefGoogle Scholar
Schamp, N. and Huylebroeck, J. (1973) Adsorption of polymers on clays: J. Polym. Sci. 42, 553562.Google Scholar
Smith, F. W. (1968) A rapid method for determining characteristics of liquid flow in porous media: J. Petrol. Technol. 11, 12191220.Google Scholar
Smith, F. W. (1970) The behavior of partially hydrolyzed polyacrylamide solutions in porous media: J. Petrol. Technol. 2, 148156.CrossRefGoogle Scholar
Spinner, E. (1960) Restricted internal rotation in protonated amides: J. Phys. Chem. 64, 275276.CrossRefGoogle Scholar
Tahoun, S. A. (1971) The infrared spectra of amides on the surface of acid montmorillonite: U.A.R.J. Chem. 14(2), 123132.Google Scholar
Tahoun, S. A. and Mortland, M. M. (1966) Complexes with primary, secondary and tertiary amides: (I) Soil. Sci. 102(4), 248254.CrossRefGoogle Scholar
Van Olphen, H. (1963) An Introduction to Clay Colloid Chemistry: Interscience, New York.Google Scholar
Wey, R. and Sieskind, O. (1959) Sur l'adsorption d'acides aminés par la montmorillonite: Compt. Rend. 248, 16521655.Google Scholar
Zavorokhina, N. A. and Kaganskaya, K. A. (1967) Action of hydrolyzed polyacrylamide on clay suspensions: Koll. Zh. 29(6), 797802.Google Scholar