Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T16:26:40.563Z Has data issue: false hasContentIssue false

Clay Minerals in Basalt-Hawaiite Rocks From Mururoa Atoll (French Polynesia). I. Mineralogy

Published online by Cambridge University Press:  01 January 2024

Antoine Mas
Affiliation:
University of Poitiers, HYDRASA INSU-CNRS, 40 avenue Recteur Pineau, 86022 Poitiers Cedex, France
Alain Meunier*
Affiliation:
University of Poitiers, HYDRASA INSU-CNRS, 40 avenue Recteur Pineau, 86022 Poitiers Cedex, France
Daniel Beaufort
Affiliation:
University of Poitiers, HYDRASA INSU-CNRS, 40 avenue Recteur Pineau, 86022 Poitiers Cedex, France
Patricia Patrier
Affiliation:
University of Poitiers, HYDRASA INSU-CNRS, 40 avenue Recteur Pineau, 86022 Poitiers Cedex, France
Patrick Dudoignon
Affiliation:
University of Poitiers, HYDRASA INSU-CNRS, 40 avenue Recteur Pineau, 86022 Poitiers Cedex, France
*
* E-mail address of corresponding author: alain.meunier@univ-poitiers.fr

Abstract

Clay minerals in chilled or brecciated margins (altered glass) and massive inner crystalline parts (mesostasis) of three basalt-hawaiite bodies from Mururoa Atoll (French Polynesia) have been studied in order to compare their chemical and mineralogical compositions. Polyphase assemblages comprise di- and trioctahedral phases, both of which consist of non-expandable layers (chlorite, celadonite) and two types of expandable layers (saponite and Fe-rich smectite or ‘nontronite-like’ material). The presence of the Fe-rich clays is supported by the presence of the X-ray diffraction 060 peak at 1.51–1.52 Å and of the infrared absorption bands at 875 and 822 cm−1 (Fe3+-Al-OH and Fe3+-Fe3+-OH groups, respectively). The chemical composition of the Fe-rich smectites does not fit with the theoretical nontronite field. The layer charge averages 1 per Si4O10 making these Fe-rich smectites close to ‘celadonite-type’ clays. This could explain the presence of mixed-layer celadonite-smectite. Plotted in an M+/4Si vs. Fe/sum octahedral cations diagram, the chemical compositions of clay minerals in the mesostasis form a continuous field limited by the celadonite-high-charge nontronite-like smectite and chlorite end-members. The clay assemblages are different from those formed in hydrothermal systems or low-grade metamorphic conditions which are characterized by the sequence: saponite → randomly ordered chlorite-smectite mixed-layered minerals (MLMs) → corrensite → chlorite. The systematic presence of Fe-rich clays either in the altered chilled margins or in the massive inner parts of the basalt-hawaiite bodies (high-charge nontronite-like smectite and mixed-layer nontronite-celadonite) makes the Mururoa sea-mount a potential terrestrial analogue for Mars surface exploration.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alt, J.C., Frey, M. Robinson, D., 1999 Very low-grade hydrothermal metamorphism of basic igneous rocks Low-grade Metamorphism Oxford, UK Blackwell Science Ltd 169201.Google Scholar
Bardintzeff, J.M. Demange, J. and Gachon, A., 1986 Petrology of the volcanic bedrock of the Mururoa atoll (Tuamotu Archipelago, French Polynesia) Journal of Volcanology and Geothermal Research 28 5583 10.1016/0377-0273(86)90005-3.CrossRefGoogle Scholar
Beaufort, D. and Meunier, A., 1994 Saponite, corrensite and chlorite-saponite mixed-layers in the Sancerre-Couy deep drill-hole (France) Clay Minerals 29 4761 10.1180/claymin.1994.029.1.06.CrossRefGoogle Scholar
Beaufort, D. Baronnet, A. Lanson, B. and Meunier, A., 1997 Corrensite: a single phase or a mixed layered phyllosilicate of the saponite to chlorite conversion series? The case study of Sancerre-Couy deep drill hole (France) American Mineralogist 82 110125 10.2138/am-1997-1-213.CrossRefGoogle Scholar
Bettison-Varga, L. and Mackinnon, I.D.R., 1997 The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite Clays and Clay Minerals 45 506516 10.1346/CCMN.1997.0450403.CrossRefGoogle Scholar
Bettison, L.A. and Schiffman, P., 1988 Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California American Mineralogist 73 6276.Google Scholar
Bevins, R.E. Robinson, D. and Rowbotham, G., 1991 Compositional variations in mafic phyllosilicates from regional low grade metabasites and application of the chlorite geothermometer Journal of Metamorphic Geology 9 711721 10.1111/j.1525-1314.1991.tb00560.x.CrossRefGoogle Scholar
Buckley, H.A. Bevan, J.C. Brown, K.M. Johnson, L.R. and Farmer, V.C., 1978 Glauconite and celadonite: two separate mineral species Mineralogical Magazine 42 373382 10.1180/minmag.1978.042.323.08.CrossRefGoogle Scholar
Caroff, M., 1992 Géochimie et pétrologie des roches volcaniques des forages d’Eiao et de Mururoa (Pollynésie Francaise): approche des processus de genèse et d’évolution des magmas basaltiques en contexte intraplaque océanique Brest, France Université Bretagne Occidentale 392 pp.Google Scholar
Cox, K.G. Bell, J.D. and Pankhurst, R.J., 1979 The Interpretation of Igneous Rocks London George Allen & Unwin 10.1007/978-94-017-3373-1 450 pp.CrossRefGoogle Scholar
Desprairies, A. Tremblay, P. Laloy, C. et al. ,Eldhom, O. Thiede, J. and Taylor, E. 1989 et al. , Secondary mineral assemblages in a volcanic sequence drilled during ODP leg 104 in the Norwegian Sea Proceedings of the ODP Scientific Results 104 Texas, USA Texas A&M University 397409.Google Scholar
Dudoignon, P. Proust, D. and Gachon, A., 1997 Hydrothermal alteration associated with rift zones at Fangatauffa atoll (French Polynesia) Bulletin of Volcanology 58 583596 10.1007/s004450050164.CrossRefGoogle Scholar
Foster, M.D., 1969 Studies of celadonite and glauconite U.S. Geological Survey Professional Paper 614-F 117.Google Scholar
Inoue, A. and Utada, M., 1991 Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan American Mineralogist 76 628640.Google Scholar
Köster, H.M. Ehrlicher, U. Gilg, A. Jordan, R. Murad, E. and Onnich, K., 1999 Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites Clay Minerals 34 579599 10.1180/000985599546460.CrossRefGoogle Scholar
Lanson, B., 1997 Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals Clays and Clay Minerals 45 132146 10.1346/CCMN.1997.0450202.CrossRefGoogle Scholar
Levi, B. Aguirre, L. and Nystrom, J.O., 1982 Metamorphic gradients in burial metamorphosed vesicular lavas. Comparison of basalt and spilite in Cretaceous basic flows from central Chile Contributions to Mineralogy and Petrology 80 4958 10.1007/BF00376734.CrossRefGoogle Scholar
Marshall, D.J., 1988 Cathodoluminescence of Geological Materials London Unwin Hyman.Google Scholar
Maury, R.C. Caroff, M. Achard, S. Guille, G. Joron, J.L. Gachon, A. Rocaboy, A. and Leterrier, J., 1992 L’Atoll de Mururoa (Polynésie Française). La série magmatique Bulletin de la Société: Géologique de France 163 659679.Google Scholar
Meunier, A., 2005 Clays Heidelberg, Germany Springer.Google Scholar
Meunier, A. Inoue, A. and Beaufort, D., 1991 Chemiographic analysis of trioctahedral smectite-to-chlorite conversion series from the Ohyu Caldera, Japan Clays and Clay Minerals 39 409415 10.1346/CCMN.1991.0390410.CrossRefGoogle Scholar
Meunier, A. and El Albani, A., 2007 The glauconite-Fe-illite-Fe-smectite problem: a critical review Terra Nova 19 95104 10.1111/j.1365-3121.2006.00719.x.CrossRefGoogle Scholar
Meunier, A. Mas, A. Beaufort, D. Patrier, P. and Dudoignon, P., 2008 Clay minerals in basalt-hawaiite rocks from Mururoa atoll (French Polynesia). II. Petrography and geochemistry Clays and Clay Minerals 56 730750 10.1346/CCMN.2008.0560612.CrossRefGoogle Scholar
Neuhoff, P.S. Fridriksson, T. Anorsson, S. and Bird, D.K., 1999 Porosity evolution and mineral paragenesis during low-grade metamorphism of basaltic lavas at Teigarhorn, eastern Iceland American Journal of Science 299 467501 10.2475/ajs.299.6.467.CrossRefGoogle Scholar
Odom, I.E., 1984 Glauconite and celadonite minerals Micas 13 545572 10.1515/9781501508820-017.CrossRefGoogle Scholar
Reynolds, R.C., 1985 NEWMOD, a computer program for the Calculation of one-Dimensional Diffraction of Mixed-layer Clays 8 Brook Dr., Hanover, New Hampshire, USA R.C. Reynolds Jr..Google Scholar
Shau, Y.H. Peacor, D. and Essene, E., 1990 Corrensite and mixed layer chlorite/corrensite in metabasalts of northern Taiwan: TEM/AEM, EPMA, XRD, and optical studies Contributions to Mineralogy and Petrology 105 123142 10.1007/BF00678980.CrossRefGoogle Scholar
Schiffman, P. Day, H.W., Frey, M. Robinson, D., 1999 Petrological methods for the study of very low-grade metabasites Low-grade Metamorphism Oxford Blackwell Scientific 108142.Google Scholar
Schiffman, P. and Fridleifsson, G.O., 1991 The smectite—chlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations Journal of Metamorphic Geology 9 679696 10.1111/j.1525-1314.1991.tb00558.x.CrossRefGoogle Scholar
Schmidt, S.T. and Robinson, D., 1997 Metamorphic grade and porosity and permeability controls on mafic phyllosilicate distributions in a regional zeolite to greenschist facies transition of the North Shore Volcanic Group, Minnesota Geological Society of America Bulletin 109 683697 10.1130/0016-7606(1997)109<0683:MGAPAP>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Thorpe, R.S. Smith, K., 1975 Midplate volcanism Geodynamics Today, a Review of Earth’s Dynamic Processes London Royal Society 7580.Google Scholar