Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T13:02:29.622Z Has data issue: false hasContentIssue false

Clay Mineralogy of the Zhada Sediments: Evidence for Climatic and Tectonic Evolution Since ~9 Ma in Zhada, Southwestern Tibet

Published online by Cambridge University Press:  01 January 2024

Hanlie Hong*
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, 430074, P. R. China Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, P. R. China
Chaowen Wang
Affiliation:
Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, P. R. China
Kefeng Zeng
Affiliation:
Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, P. R. China
Kexin Zhang
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, 430074, P. R. China Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, P. R. China
Ke Yin
Affiliation:
Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, P. R. China
Zhaohui Li
Affiliation:
Geosciences Department, Wisconsin-Parkside, Kenosha, WI 53141-2000, USA
*
*E-mail address of corresponding author: honghl8311@yahoo.com.cn

Abstract

The clay mineralogy of the Zhada sediments was investigated, using X-ray diffraction and scanning electron microscopy, to obtain a better understanding of climatic change and uplift of the Himalayas in the Zhada region of Tibet. The sediments of Zhada basin in the late Miocene to Pliocene consist of lacustrine and fluvial deposits >800 m thick and can be subdivided into five clay assemblage zones based on their clay-mineral composition. The upward zonation is as follows: (1) smectite-kaolinite; (2) illite-chlorite; (3) chlorite-illite-kaolinite; (4) illite-chlorite; and (5) smectite, illite, and kaolinite. The ratio of chlorite + illite to kaolinite + smectite (Ch+I/K+S) and the Kübler index indicate a warm and humid climate from 9.5 to 8.4 Ma, a cold and dry climate from 8.4 to 7.2 Ma, a warm and seasonal arid climate from 7.2 to 4.5 Ma, a cool and humid climate from 4.5 to 3.6 Ma, and a warm and seasonally humid climate from 3.6 to 3.0 Ma. Intense fluctuations in the Kübler index and in the quantities of evaporite minerals dolomite, aragonite, and gypsum, during the period 7.2–4.5 Ma suggest strong climatic fluctuations between humid and seasonally humid conditions in the Zhada basin. Rapid uplift around the Zhada basin occurred at 8.4 and 3.6 Ma, with sharp subsidence at 7.2 and 4.5 Ma. Evolution of the climate at Zhada showed a different model from that of global climate change, and tectonics-led climate change was the major contributor to climate evolution in the area.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, J.C. Ali, J.R. and Davis, A.M., 2007 When and where did India and Asia collided? Journal of Geophysical Research 112 B05423, 119.CrossRefGoogle Scholar
An, Z.S. Kutzbach, J.E. Prell, W.L. and Porter, S.C., 2001 Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan since Late Miocene times Nature 411 6266.Google Scholar
Anadón, P. Burjachs, F. Martín, M. Rodriguez-Lázaro, J. Robles, F. Utrilla, R. and Vázquez, A., 2002 Paleoenvironmental evolution of the Pliocene Villarroya Lake, northern Spain A multidisciplinary approach. Sedimentary Geology 148 927.CrossRefGoogle Scholar
Biscaye, P.E., 1965 Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans Geological Society of America Bulletin 76 803832.CrossRefGoogle Scholar
Chamley, H., 1989 Clay Sedimentology Heidelberg, Germany Springer-Verlag 623.CrossRefGoogle Scholar
Clevis, Q. de Boer, P.L. and Nijman, W., 2004 Differentiating the effect of episodic tectonism and eustatic sea-level fluctuations in foreland basins filled by alluvial fans and axial deltaic systems: insights from a threedimensional stratigraphic forward model Sedimentology 51 809835.CrossRefGoogle Scholar
Dettman, D.L. Kohn, M.J. Quade, J. Ryerson, F.J. Ojha, T.P. and Hamidullah, S., 2001 Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y Geology 29 3134.2.0.CO;2>CrossRefGoogle Scholar
Enzel, Y. Ely, L.L. Mishra, S. Ramesh, R. Amit, R. Lazar, B. Rajaguru, S.N. Baker, V.R. and Sadler, A., 1999 Highresolution Holocene environmental changes in the Thar Desert, northwestern India Science 284 125128.CrossRefGoogle ScholarPubMed
Fagel, N. Debrabant, P. and André, L., 1994 Clay supplies in the Central Indian Basin since the Late Miocene: climatic or tectonic control? Marine Geology 122 151172.CrossRefGoogle Scholar
Fagel, N. Boski, T. Likhoshway, L. and Oberhaensli, H., 2003 Late Quaternary clay mineral record in Central Lake Baikal Academician Ridge, Siberia Palaeogeography, Palaeoclimatology, Palaeoecology 193 159179.CrossRefGoogle Scholar
France-Lanord, C. and Derry, L.A., 1994 δ13C of organic carbon burial forcing of the growth of the carbon cycle from Himalayan erosion Geochimica et Cosmochimica Acta 58 48094814.CrossRefGoogle Scholar
Flynn, L.J. and Jacobs, L.L., 1982 Effects of changing environments on Siwalik rodent faunas of northern Pakistan Palaeogeography. Palaeoclimateology, Palaeoecology 38 129138.CrossRefGoogle Scholar
Garzione, C.N. Dettman, D.L. Quade, J. DeCelles, P.G. and Butler, R.F., 2000 High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal Geology 28 339342.2.0.CO;2>CrossRefGoogle Scholar
Garzione, C.N. DeCelles, P.G. Hodkinson, D.G. Ojha, T.P. and Upreti, B.N., 2003 East-west extension and Miocene environmental change in the southern Tibetan plateau: Thakkhola graben, central Nepal Geological Society of America Bulletin 115 320.2.0.CO;2>CrossRefGoogle Scholar
Gaucher, G., 1981 Les Facteurs de la Pedogenese Dison, Belgium G. Lelotte 730.Google Scholar
Grosjean, M. van Leeuwen, J.F.N. van der Knaap, W.O. Geyh, M.A. Ammann, B. Tanner, W. Messerli, B. Nunez, L.A. Valero-Garces, B.L. and Veit, H., 2001 A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti 23°S, northern Chile Global and Planetary Change 28 3551.CrossRefGoogle Scholar
Hallam, A. Grose, J.A. and Ruffell, A.H., 1991 Paleoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France Palaeogeography, Palaeoclimateology, Palaeoecology 81 173187.CrossRefGoogle Scholar
Harrison, T.M. Copeland, P. Kidd, W.S.F. and Yin, A., 1992 Raising Tibet Science 255 16631670.CrossRefGoogle ScholarPubMed
Hillier, S., 2000 Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample sparation Clay Minerals 35 291302.CrossRefGoogle Scholar
Hong, H.L. Li, Z.H. Xue, H.J. Zhu, Y.H. Zhang, K.X. and Xiang, S.Y., 2007 Oligocene clay mineralogy of the Linxia basin: evidence of palaeoclimatic evolution subsequent to the initial-stage uplift of the Tibetan plateau Clays and Clay Minerals 55 492505.CrossRefGoogle Scholar
Hong, H.L. Zhang, K.X. and Li, Z.H., 2010 Climatic and tectonic uplift evolution since ~7 Ma in Gyirong basin, southwestern Tibet plateau: Clay-mineral evidence International Journal of Earth Science 99 13051315.CrossRefGoogle Scholar
Hoorn, C. Ohja, T. and Quade, J., 2000 Palynological evidence for vegetation development and climatic change in the sub-Himalayan zone (Neogene, Central Nepal) Palaeoclimatology, Palaeogeography, Palaeoecology 163 133161.CrossRefGoogle Scholar
Hu, S. Goddu, S.R. Appel, E. Verosub, K. Yang, X. and Wang, S., 2005 Palaeoclimatic changes over the past 1 million years derived from lacustrine sediments of Heqing basin (Yunnan, China) Quaternary International 136 123129.CrossRefGoogle Scholar
Huang, C.M. and Wang, C.S., 2001 A review on paleosols and uplift of Qinghai-xizang plateau Geological Science and Technology Information 20 14.Google Scholar
Huang, Z.G. Zhang, W.Q. and Chen, J.H., 1999 The change of natural zones and the evolution of red earth in China Acta Geographica Sinica 54 193203.Google Scholar
Jackson, M.L., 1978 Soil Chemical Analyses Madison, Wisconsin, USA University of Wisconsin.Google Scholar
Kempf, O. Blisniuk, P.M. Wang, S. Fang, X. Wrozyna, C. and Schwalb, A., 2009 Sedimentology, sedimentary petrology, and paleoecology of the monsoon-driven, fluviolacustrine Zhada Basin, SW-Tibet Sedimentary Geology 222 2741.CrossRefGoogle Scholar
Li, J.G. and Zhou, Y., 2001 Pliocene palynoflora from the Zhada basin, west Xizang (Tibet) and the palaeaoenvironment Acta Micropalaeontologica Sinica 18 8996.Google Scholar
Li, J.J. and Fang, X., 1999 Uplift of the Tibetan Plateau and environmental changes Chinese Science Bulletin 44 21172124.CrossRefGoogle Scholar
Lindgreen, H. and Surlyk, F., 2000 Upper Permian-Lower Cretaceous clay mineralogy of East Greenland: provenance, paleoclimate and volcanicity Clay Minerals 35 791806.CrossRefGoogle Scholar
Manju, C.S. Narayanan Nair, V. and Lalithambika, M., 2001 Mineralogy, geochemistry and utilization study of the Madayi kaolin deposits, north Kerala, India Clays and Clay Minerals 49 355369.CrossRefGoogle Scholar
Miller, K.G. Kominz, M.A. Browning, J.V. Wright, J.D. Mountain, G.S. Katz, M.E. Sugarman, P.J. Cramer, B.S. Christie-Blick, N. and Pekar, S.F., 2005 The Phanerozoic record of Global Sea-Level Change Science 310 12931298.CrossRefGoogle ScholarPubMed
Millot, G., 1970 Geology of Clays Berlin Springer-Verlag 499.CrossRefGoogle Scholar
Molnar, P. England, P. and Martinod, J., 1993 Mantle dynamics, the uplift of the Tibetan Plateau, and the Indian monsoon Reviews of Geophysics 31 357396.CrossRefGoogle Scholar
Murphy, M.A. Yin, A. Kapp, P. Harrison, T.M. Manning, C.E. Ryerson, F.J. Ding, L. and Guo, J., 2002 Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: implications for the eastward extent of the Karakoram fault Geological Society of America Bulletin 114 428447.2.0.CO;2>CrossRefGoogle Scholar
Ojha, T.P. Butler, R.F. Quade, J. DeCelles, P.G. Richards, D. and Upreti, B.N., 2000 Magnetic polarity stratigraphy of the Neogene Siwalik Group at Khutia Khola, far western Nepal Geological Society of America Bulletin 112 424434.2.0.CO;2>CrossRefGoogle Scholar
Parés, J.M. Van der Voo, R. Downs, R.W. Yan, M. and Fang, X., 2003 Northeastward growth and uplift of the Tibetan Plateau: Magnetostratigraphic insights from the Guide Basin Journal of Geophysical Research 108 111.CrossRefGoogle Scholar
Perry, E.A. and Hower, J., 1970 Burial diagenesis in Gulf Coast politic sediments Clays and Clay Minerals 18 165177.CrossRefGoogle Scholar
Qian, F., 1999 Study on magnetostratigraphy in Qinghai-Tibetan Plateau in late Cenozoic Journal of Geomechanics 5 2234.Google Scholar
Quade, J. Cater, J. Ojha, T. Adam, J. and Harrison, T., 1995 Late Miocene environmental change in Nepal and the northern Indian subcontinent: Stable isotopic evidence from paleosols Geological Society of America Bulletin 107 13811397.2.3.CO;2>CrossRefGoogle Scholar
Rea, D.K. Snoeckx, H. and Joseph, L.H., 1998 Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere Paleoceanography 13 215224.CrossRefGoogle Scholar
Saylor, J.E. Quade, J. Dellman, D.L. DeCelles, P.G. Kapp, P.A. and Ding, L., 2009 The late Miocene through present paleoelevation history of southwestern Tibet American Journal of Science 309 142.CrossRefGoogle Scholar
Saylor, J. DeCelles, P. and Quade, J., 2010 Climate-driven environmental change in the Zhada basin, southwestern Tibetan Plateau Geosphere 6 7492.CrossRefGoogle Scholar
Saylor, J. DeCelles, P. Gehrels, G. Murphy, M. Zhang, R. and Kapp, P., 2010 Basin formation in the High Himalaya by arcparallel extension and tectonic damming: Zhada basin, southwestern Tibet Tectonics 29 TC1004.CrossRefGoogle Scholar
Schieber, J., 1986 Stratigraphic control of rare-earth pattern types in mid-Proterozoic sediments of the Belt Super Group, Montana, U.S.A.: implications for basin analysis Chemical Geology 54 135148.CrossRefGoogle Scholar
Shi, Y.F. Li, J.J. and Li, B.Y., 1998 Late Cenozoic Uplift and Environmental Change of Qinghai-Tibet Plateau Guangzhou, China Guangdong Science & Technology Press 463.Google Scholar
Singer, A., 1984 The paleoclimatic interpretation of clay minerals in sediments - a review Earth Science Reviews 21 251293.CrossRefGoogle Scholar
Solotchina, E.P. Prokopenko, A.A. Kuzmin, M.I. Solotchin, P.A. and Zhdanova, A.N., 2009 Climate signals in sediment mineralogy of Lake Baikal and Lake Hovsgol during the LGM-Holocene transition and the 1-Ma carbonate record from the HDP-04 drill core Quaternary International 205 3852.CrossRefGoogle Scholar
Tapponnier, P. Xu, Z. Roger, F. Meyer, B. Arnaud, N. Wittlinger, G. and Yang, J., 2001 Oblique stepwise rise and growth of the Tibet Plateau Science 294 16711677.CrossRefGoogle ScholarPubMed
Thiede, R.C. Arrowsmith, J.R. Bookhagen, B. McWilliams, M.O. Sobel, E.R. and Strecker, M.R., 2006 Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India Geological Society of America Bulletin 118 635650.CrossRefGoogle Scholar
Thiry, M., 2000 Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin Earth-Science Reviews 49 201221.CrossRefGoogle Scholar
Van Lith, Y. Warthmann, R. Vasconcelos, G. and McKenzie, J.A., 2003 Sulphate reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation Geobiology 1 7179.CrossRefGoogle Scholar
Wang, S. Zhang, W. Fang, X. Dai, S. and Kempf, O., 2008 Magnetostratigraphy of the Zanda basin in southwest Tibet Plateau and its tectonic implications Chinese Science Bulletin 53 13931400.CrossRefGoogle Scholar
Wang, Y. Deng, T. and Biasatti, D., 2006 Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma Geology 34 309312.CrossRefGoogle Scholar
Weaver, C.E., 1989 Developments in Sedimentology Clays, Muds, and Shales 44 819.Google Scholar
Yue, L.P. Deng, T. Zhang, R. Zhang, Z.Y. Heller, F. Wang, J.Q. and Yang, L.R., 2004 Paleomagnetic chronology and records of Himalayan uplift on the Longgugou section of Gyirong-Oma basin, Tibet Chinese Journal of Geophysics 47 10091016.Google Scholar
Zhang, K.X. Wang, G.C. Cao, K. Liu, C. Xiang, S.Y. Hong, H.L. Kou, X.H. Xu, Y.D. Chen, F.N. Meng, Y.N. and Chen, R.M., 2008 Cenozoic sedimentary records and geochronological constraints of differential uplift of the Qinghai-Tibet Plateau Science in China Series D: Earth Sciences 51 16581672.CrossRefGoogle Scholar
Zheng, H. Powell, C.M. An, Z. Zhou, J. and Dong, G., 2000 Pliocene uplift of the northern Tibetan Plateau Geology 28 715718.2.0.CO;2>CrossRefGoogle Scholar
Zhu, D.G. Meng, X.G. Shao, Z.G. Yang, C.B. Han, J.E. Yu, J. Meng, Q.W. and Lu, R.P., 2007 Evolution of the paleovegetation, paleoenvironment and paleoclimate during Pliocene-early Pleistocene in Zhada Basin, Ali, Tibet Acta Geologica Sinica 81 295306.Google Scholar