Hostname: page-component-76dd75c94c-28gj6 Total loading time: 0 Render date: 2024-04-30T08:11:33.978Z Has data issue: false hasContentIssue false

Calcined Palygorskites as Supplementary Cementitious Materials

Published online by Cambridge University Press:  01 January 2024

Victor Poussardin
Affiliation:
Université Gustave Eiffel, GERS-GIE, F-44344, Bouguenais, France Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000, Nantes, France Université de Sherbrooke, Sherbrooke, QC, Canada
Valentin Roux
Affiliation:
Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000, Nantes, France Université de Sherbrooke, Sherbrooke, QC, Canada
William Wilson
Affiliation:
Université de Sherbrooke, Sherbrooke, QC, Canada
Michael Paris
Affiliation:
Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000, Nantes, France
Arezki Tagnit-Hamou
Affiliation:
Université de Sherbrooke, Sherbrooke, QC, Canada
Dimitri Deneele*
Affiliation:
Université Gustave Eiffel, GERS-GIE, F-44344, Bouguenais, France Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000, Nantes, France

Abstract

Reducing the environmental footprint of cement is an absolute necessity to meet the commitments of COP26 and to limit global warming to + 1.5°C compared to the pre-industrial level. In this context, particular interest has developed in recent years in the use of calcined clays as supplementary cementitious materials (SCMs). Due to their high reactivity, large reserves and homogeneous distribution on the earth's surface, calcined clays represent a viable alternative to conventional SCMs. Clay minerals are highly variable and numerous, each with their own characteristics. As a result, not all of them have potential for use as SCMs. The present paper investigated the use of palygorskite (a clay that has been relatively poorly studied) as an SCM. Two commercial palygorskites of different grades were selected and their calcination was studied by X-ray diffraction and pozzolanic activity tests. Blended cements incorporating 20% of each calcined palygorskite were prepared and the mechanical performance and resistivity of the mortars measured. The results show that the optimum calcination temperature is 800°C (allowing complete amorphization of the clay fraction and the highest pozzolanic reactivity) for both clays. Mortars made with 80% ordinary Portland cement (OPC) blended with 20% of 800°C calcined palygorskite allowed a significant increase in compressive strength and electrical resistivity compared to the reference (100% OPC). The clay sample with palygorskite as the dominant mineral exhibited the greatest pozzolanic reactivity and mechanical performance in cementitious systems, confirming that palygorskite is a clay mineral with a significant potential for a use as a SCM. The second sample with smaller palygorskite content also allowed a significant increase in mechanical performance. This demonstrated that it is not necessary to use high-purity samples and enhances the value of this type of material.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Andrey G. Kalinichev

References

Alujas, A., Fernández, R., Quintana, R., Scrivener, K. L., & Martirena, F. (2015). Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Applied Clay Science, 108, 94101. https://doi.org/10.1016/j.clay.2015.01.028CrossRefGoogle Scholar
Andersen, M. D., Jakobsen, H. J., & Skibsted, J. (2003). Incorporation of Aluminum in the Calcium Silicate Hydrate (C-S-H) of Hydrated Portland Cements: A High-Field 27 Al and 29 Si MAS NMR Investigation. Inorganic Chemistry, 42(7), 22802287. https://doi.org/10.1021/ic020607bCrossRefGoogle ScholarPubMed
Andersen, M. D., Jakobsen, H. J., & Skibsted, J. (2004). Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy. Cement and Concrete Research, 34(5), 857868. https://doi.org/10.1016/j.cemconres.2003.10.009CrossRefGoogle Scholar
Andersen, M. D., Jakobsen, H. J., & Skibsted, J. (2006). A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cement and Concrete Research, 36(1), 317. https://doi.org/10.1016/j.cemconres.2005.04.010CrossRefGoogle Scholar
ASTM International. (2020a). ASTM C109M-20, « Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Or [50-mm] Cube Specimens) ». https://doi.org/10.1520/C0109_C0109M-16ACrossRefGoogle Scholar
ASTM International. (2020b). ASTM Standard C1897–20, « Standard Test Methods for Measuring the Reactivity of Supplementary Cementitious Materials by Isothermal Calorimetry and Bound Water Measurements ». https://doi.org/10.1520/C1897-20CrossRefGoogle Scholar
Bajželj, B., Allwood, J. M., & Cullen, J. M. (2013). Designing Climate Change Mitigation Plans That Add Up. Environmental Science & Technology, 47(14), 80628069. https://doi.org/10.1021/es400399hCrossRefGoogle ScholarPubMed
Barker, D. J., Turner, S. A., Napier-Moore, P. A., Clark, M., & Davison, J. E. (2009). CO2 Capture in the Cement Industry. Energy Procedia, 1(1), 8794. https://doi.org/10.1016/j.egypro.2009.01.014CrossRefGoogle Scholar
Cancio Díaz, Y., Sánchez Berriel, S., Heierli, U., Favier, A. R., Sánchez Machado, I. R., Scrivener, K. L., Martirena Hernández, J. F., & Habert, G. (2017). Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Development Engineering, 2, 8291. https://doi.org/10.1016/j.deveng.2017.06.001CrossRefGoogle Scholar
Cardinaud, G., Rozière, E., Martinage, O., Loukili, A., Barnes-Davin, L., Paris, M., & Deneele, D. (2021). Calcined clay – Limestone cements: Hydration processes with high and low-grade kaolinite clays. Construction and Building Materials, 277, 122271. https://doi.org/10.1016/j.conbuildmat.2021.122271CrossRefGoogle Scholar
Carniel, L. C., Conceição, R. V., Dani, N., Stefani, V. F., Balzaretti, N. M., & dos Reis, R. (2014). Structural changes of potassium-saturated smectite at high pressures and high temperatures: Application for subduction zones. Applied Clay Science, 102, 164171. https://doi.org/10.1016/j.clay.2014.09.037CrossRefGoogle Scholar
Crossin, E. (2015). The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. Journal of Cleaner Production, 95, 101108. https://doi.org/10.1016/j.jclepro.2015.02.082CrossRefGoogle Scholar
Dai, Z., Tran, T. T., & Skibsted, J. (2014). Aluminum Incorporation in the C-S-H Phase of White Portland Cement-Metakaolin Blends Studied by 27 Al and 29 Si MAS NMR Spectroscopy. Journal of the American Ceramic Society, 97(8), 26622671. https://doi.org/10.1111/jace.13006CrossRefGoogle Scholar
Danner, T., Norden, G., & Justnes, H. (2018). Characterisation of calcined raw clays suitable as supplementary cementitious materials. Applied Clay Science, 162, 391402. https://doi.org/10.1016/j.clay.2018.06.030CrossRefGoogle Scholar
Danner, T., Norden, G., & Justnes, H. (2021). Calcareous smectite clay as a pozzolanic alternative to kaolin. European Journal of Environmental and Civil Engineering, 25(9), 16471664. https://doi.org/10.1080/19648189.2019.1590741CrossRefGoogle Scholar
Fernandez, R., Martirena, F., & Scrivener, K. L. (2011). The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research, 41(1), 113122. https://doi.org/10.1016/j.cemconres.2010.09.013CrossRefGoogle Scholar
Garg, N., & Skibsted, J. (2014). Thermal Activation of a Pure Montmorillonite Clay and Its Reactivity in Cementitious Systems. The Journal of Physical Chemistry C, 118(21), 1146411477. https://doi.org/10.1021/jp502529dCrossRefGoogle Scholar
Garg, N., & Skibsted, J. (2016). Pozzolanic reactivity of a calcined interstratifed illite/smectite (70/30) clay. Cement and Concrete Research, 79, 101111. https://doi.org/10.1016/j.cemconres.2015.08.006CrossRefGoogle Scholar
Huang, L., & Yan, P. (2019). Effect of alkali content in cement on its hydration kinetics and mechanical properties. Construction and Building Materials, 228, 116833. https://doi.org/10.1016/j.conbuildmat.2019.116833CrossRefGoogle Scholar
Huntzinger, D. N., & Eatmon, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7), 668675. https://doi.org/10.1016/j.jclepro.2008.04.007CrossRefGoogle Scholar
Kawabata, Y., & Yamada, K. (2015). Evaluation of Alkalinity of Pore Solution Based on the Phase Composition of Cement Hydrates with Supplementary Cementitious Materials and its Relation to Suppressing ASR Expansion. Journal of Advanced Concrete Technology, 13(11), 538553. https://doi.org/10.3151/jact.13.538CrossRefGoogle Scholar
Krekeler, M. P. S., Hammerly, E., Rakovan, J., & Guggenheim, S. (2005). Microscopy Studies of the Palygorskite-to-Smectite Transformation. Clays and Clay Minerals, 53(1), 9299. https://doi.org/10.1346/CCMN.2005.0530109CrossRefGoogle Scholar
Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist, 68, 277279.Google Scholar
Krishnan, S., Emmanuel, A. C., Shah, V., Parashar, A., Mishra, G., Maity, S., & Bishnoi, S. (2019). Industrial production of limestone calcined clay cement: Experience and insights. Green Materials, 7(1), 1527. https://doi.org/10.1680/jgrma.18.00003CrossRefGoogle Scholar
Kunhi Mohamed, A., Moutzouri, P., Berruyer, P., Walder, B., Siramanont, J., Harris, M., Negroni, M., Galmarini, S., Parker, S., Scrivener, K., Emsley, L., & Bowen, P. (2020). The Atomic-Level Structure of Cementitious Calcium Aluminate Silicate Hydrate. Journal of American Ceramic Society, 142(25), 1106011071. https://doi.org/10.1021/jacs.0c02988CrossRefGoogle ScholarPubMed
Londono-Zuluaga, D., Gholizadeh-Vayghan, A., Winnefeld, F., Avet, F., Ben Haha, M., Bernal, S. A., Cizer, Ö., Cyr, M., Dolenec, S., Durdzinski, P., Haufe, J., Hooton, D., Kamali-Bernard, S., Li, X., Marsh, A. T. M., Marroccoli, M., Mrak, M., Muy, Y., Patapy, C., ... Scrivener, K. L. (2022). Report of RILEM TC 267-TRM phase 3: Validation of the R3 reactivity test across a wide range of materials. Materials and Structures, 55(5), 142. https://doi.org/10.1617/s11527-022-01947-3CrossRefGoogle Scholar
Love, C. A., Richardson, I. G., & Brough, A. R. (2007). Composition and structure of C-S–H in white Portland cement–20% metakaolin pastes hydrated at 25°C. Cement and Concrete Research, 37(2), 109117. https://doi.org/10.1016/j.cemconres.2006.11.012CrossRefGoogle Scholar
Mari, E., Sourisseau, S., Bouxin, A., Borde, C., Padilla, S., & Gourdon, T. (2021). ADEME: Plan de Transition Sectoriel de l'industrie cimentière en France: Rapport final. 187 pages.Google Scholar
Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z., & Hoatson, G. (2002). Modelling one- and two-dimensional solid-state NMR spectra: Modelling 1D and 2D solid-state NMR spectra. Magnetic Resonance in Chemistry, 40(1), 7076. https://doi.org/10.1002/mrc.984CrossRefGoogle Scholar
Miller, S. A., John, V. M., Pacca, S. A., & Horvath, A. (2018). Carbon dioxide reduction potential in the global cement industry by 2050. Cement and Concrete Research, 114, 115124. https://doi.org/10.1016/j.cemconres.2017.08.026CrossRefGoogle Scholar
Monteiro, P. J. M., Miller, S. A., & Horvath, A. (2017). Towards sustainable concrete. Nature Materials, 16(7), 7. https://doi.org/10.1038/nmat4930CrossRefGoogle ScholarPubMed
Pardal, X., Brunet, F., Charpentier, T., Pochard, I., & Nonat, A. (2012). 27 Al and 29Si Solid-State NMR Characterization of Calcium-Aluminosilicate-Hydrate. Inorganic Chemistry, 51(3), 3. https://doi.org/10.1021/ic202124xCrossRefGoogle ScholarPubMed
Poussardin, V. (2022). La Palygorskite calcinée comme ajout cimentaire: Une étude comparative avec le métakaolin. Academic Journal of Civil Engineering, 40(1), 1. https://doi.org/10.26168/ajce.40.1.87Google Scholar
Poussardin, V., Paris, M., Tagnit-Hamou, A., & Deneele, D. (2020). Potential for calcination of a palygorskite-bearing argillaceous carbonate. Applied Clay Science, 198, 105846. https://doi.org/10.1016/j.clay.2020.105846CrossRefGoogle Scholar
Poussardin, V., Paris, M., Wilson, W., Tagnit-Hamou, A., & Deneele, D. (2022). Calcined palygorskite and smectite bearing marlstones as supplementary cementitious materials. Materials and Structures, 55(8), 224. https://doi.org/10.1617/s11527-022-02053-0CrossRefGoogle Scholar
Rahman, A., Rasul, M. G., Khan, M. M. K., & Sharma, S. (2013). Impact of Alternative Fuels on the Cement Manufacturing Plant Performance: An Overview. Procedia Engineering, 56, 393400. https://doi.org/10.1016/j.pro-eng.2013.03.138CrossRefGoogle Scholar
Richardson, I. G., & Groves, G. W. (1993). The incorporation of minor and trace elements into calcium silicate hydrate (C-S-H) gel in hardened cement pastes. Cement and Concrete Research, 23(1), 1. https://doi.org/10.1016/0008-8846(93)90143-WGoogle Scholar
Richardson, I. G., Brough, A. R., Brydson, R., Groves, G. W., & Dobson, C. M. (1993). Location of Aluminum in Substituted Calcium Silicate Hydrate (C-S-H) Gels as Determined by 29Si and 27Al NMR and EELS. Journal of the American Ceramic Society, 76(9), 22852288. https://doi.org/10.1111/j.1151-2916.1993.tb07765.xCrossRefGoogle Scholar
Scrivener, K., Martirena, F., Bishnoi, S., & Maity, S. (2018). Calcined clay limestone cements (LC3). Cement and Concrete Research, 114. https://doi.org/10.1016/j.cemconres.2017.08.017CrossRefGoogle Scholar
Skibsted, J., Jakobsen, H. J., & Hall, C. (1995). Quantification of calcium silicate phases in Portland cements by 29Si MAS NMR spectroscopy. Journal of the Chemical Society, Faraday Transactions, 91(24), 4423. https://doi.org/10.1039/ft9959104423CrossRefGoogle Scholar
Staněk, T., & Sulovský, P. (2015). Active low-energy belite cement. Cement and Concrete Research, 68, 203210. https://doi.org/10.1016/j.cemconres.2014.11.004CrossRefGoogle Scholar
Trümer, A., Ludwig, H.-M., Schellhorn, M., & Diedel, R. (2019). Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete. Applied Clay Science, 168, 3642. https://doi.org/10.1016/j.clay.2018.10.015CrossRefGoogle Scholar
Xie, Q., Chen, T., Zhou, H., Xu, X., Xu, H., Ji, J., Lu, H., & Balsam, W. (2013). Mechanism of palygorskite formation in the Red Clay Formation on the Chinese Loess Plateau, northwest China. Geoderma, 192, 3949. https://doi.org/10.1016/j.geoderma.2012.07.021CrossRefGoogle Scholar
Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105121. https://doi.org/10.1016/j.earscirev.2014.11.016CrossRefGoogle Scholar