Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-04T19:04:25.516Z Has data issue: false hasContentIssue false

Binding of DNA to Natural Sepiolite: Applications in Biotechnology and Perspectives

Published online by Cambridge University Press:  01 January 2024

Sandrine Ragu
Affiliation:
Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Paris, France
Olivier Piétrement
Affiliation:
Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
Bernard S. Lopez*
Affiliation:
Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Paris, France
*
*E-mail address of corresponding author: bernard.lopez@inserm.fr

Abstract

DNA manipulation is crucial for many biotechnological prospects and for medical applications such as gene therapy. This requires the amplification and extraction of DNA from bacteria and the transfer of these DNA molecules into cells, including bacterial and mammalian cells. The capacity of the natural magnesium silicate clay mineral sepiolite to bind to DNA makes it a potentially useful tool for biotechnological/medical strategies. In addition, sepiolite is inexpensive and classified as non-toxic and non-carcinogenic. This review will first describe the physicochemical interactions between sepiolite and DNA. Then, the leverage of sepiolite/DNA interactions for DNA extraction from bacteria, to optimize DNA transfer into bacteria and DNA transfection into mammalian cells, are presented. Finally, the putative toxicity of sepiolite and its advantages and perspectives for future prospects, such as the improvement of immunotherapy, are also discussed.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Sandrine Ragu and Olivier Piétrement contributed equally to the writing of this paper

This paper belongs to a special issue on ‘Clay Minerals in Health Applications’

References

Alcântara, A. C. S., Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2012). Zein-Fibrous Clays Biohybrid Materials. European Journal of Inorganic Chemistry, 2012(32), 52165224. https://doi.org/10.1002/ejic.201200582CrossRefGoogle Scholar
Alcântara, A. C. S., Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2014). Polysaccharide–fibrous clay bionanocomposites. Applied Clay Science, 96, 28. https://doi.org/10.1016/j.clay.2014.02.018CrossRefGoogle Scholar
Ameziane-El-Hassani, R., Schlumberger, M., & Dupuy, C. (2016). NADPH oxidases: new actors in thyroid cancer? Nature Reviews. Endocrinology, 12(8), 485494. https://doi.org/10.1038/nrendo.2016.64CrossRefGoogle ScholarPubMed
Bellmann, B., Muhle, H., & Ernst, H. (1997). Investigations on health-related properties of two sepiolite samples. Environmental Health Perspectives, 105(Suppl), 1049–1052. https://doi.org/10.1289/ehp.97105s51049Google ScholarPubMed
Brauner, K., & Preisinger, A. (1956). Struktur und Entstehung des Sepioliths. Tschermaks Mineralogische und Petrographische Mitteilungen, 6(1–2), 120140. https://doi.org/10.1007/BF01128033CrossRefGoogle Scholar
Breau, M., Houssaini, A., Lipskaia, L., Abid, S., Born, E., Marcos, E., Czibik, G., Attwe, A., Beaulieu, D., Palazzo, A., Flaman, J.-M., Bourachot, B., Collin, G., Tran Van Nhieu, J., Bernard, D., Mechta-Grigoriou, F., & Adnot, S. (2019). The antioxidant N-acetylcysteine protects from lung emphysema but induces lung adenocarcinoma in mice. JCI Insight, 4(19), e127647. https://doi.org/10.1172/jci.insight.127647CrossRefGoogle ScholarPubMed
Castro-Smirnov, F. A., Piétrement, O., Aranda, P., Bertrand, J.-R. J.-R., Ayache, J., Le Cam, E., Ruiz-Hitzky, E., & Lopez, B. S. (2016). Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells. Scientific Reports, 6, 36341. https://doi.org/10.1038/srep36341CrossRefGoogle ScholarPubMed
Castro-Smirnov, F. A., Ayache, J., Bertrand, J.-R. J.-R., Dardillac, E., Le Cam, E., Piétrement, O., Aranda, P., Ruiz-Hitzky, E., & Lopez, B. S. B. S. (2017). Cellular uptake pathways of sepiolite nanofibers and DNA transfection improvement. Scientific Reports, 7(1), 5586. https://doi.org/10.1038/s41598-017-05839-3CrossRefGoogle ScholarPubMed
Castro-Smirnov, F. A., Piétrement, O., Aranda, P., Le Cam, E., Ruiz-Hitzky, E., & Lopez, B. S. (2020). Biotechnological applications of the sepiolite interactions with bacteria: Bacterial transformation and DNA extraction. Applied Clay Science, 191, 105613. https://doi.org/10.1016/j.clay.2020.105613CrossRefGoogle Scholar
Cervini-Silva, J., Nieto-Camacho, A., & Gómez-Vidales, V. (2015). Oxidative stress inhibition and oxidant activity by fibrous clays. Colloids and Surfaces B: Biointerfaces, 133, 3235. https://doi.org/10.1016/j.colsurfb.2015.05.042CrossRefGoogle ScholarPubMed
Choi, G., Kwon, O.-J., Oh, Y., Yun, C.-O., & Choy, J.-H. (2014). Inorganic nanovehicle targets tumor in an orthotopic breast cancer model. Scientific Reports, 4, 4430. https://doi.org/10.1038/srep04430CrossRefGoogle Scholar
Choy, J.-H., Kwak, S.-Y., Jeong, Y.-J., & Park, J.-S. (2000). Inorganic layered double hydroxides as nonviral vectors. Angewandte Chemie International Edition, 39, 40414045. https://doi.org/10.1002/1521-3773(20001117)39:22%3C4041::AID-ANIE4041%3E3.0.CO;2-C3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Darder, M., López-Blanco, M., Aranda, P., Aznar, A. J., Bravo, J., & Ruiz-Hitzky, E. (2006). Microfibrous chitosan-sepiolite nanocomposites. Chemistry of Materials, 18, 16021610. https://doi.org/10.1021/cm0523642CrossRefGoogle Scholar
Denizeau, F., Marion, M., Chevalier, G., & Cote, M. G. (1985). Absence of genotoxic effects of nonasbestos mineral fibers. Cell Biology and Toxicology, 1(2), 2332. https://doi.org/10.1007/BF00717788CrossRefGoogle ScholarPubMed
Duan, Q., Zhang, H., Zheng, J., & Zhang, L. (2020). Turning cold into hot: Firing up the tumor microenvironment. Trends in Cancer, 6, 605618. https://doi.org/10.1016/j.trecan.2020.02.022CrossRefGoogle ScholarPubMed
Dupaigne, P., Tavares, E. M., Piétrement, O., & Le Cam, E. (2018). Recombinases and related proteins in the context of homologous recombination analyzed by molecular microscopy. Methods in Molecular Biology, 1805, 251270. https://doi.org/10.1007/978-1-4939-8556-2_13CrossRefGoogle ScholarPubMed
Esfahani, K., Roudaia, L., Buhlaiga, N., Del Rincon, S. V., Papneja, N., & Miller, W. H. (2020). A review of cancer immunotherapy: From the past, to the present, to the future. Current Oncology. https://doi.org/10.3747/co.27.5223CrossRefGoogle Scholar
García, N., Guzmán, J., Benito, E., Esteban-Cubillo, A., Aguilar, E., Santarén, J., & Tiemblo, P. (2011). Surface modification of sepiolite in aqueous gels by using methoxysilanes and its impact on the nanofiber dispersion ability. Langmuir, 27(7), 39523959. https://doi.org/10.1021/la104410rCrossRefGoogle ScholarPubMed
González-Tortuero, E., Rodríguez-Beltrán, J., Radek, R., Blázquez, J., & Rodríguez-Rojas, A. (2018). Clay-induced DNA breaks as a path for genetic diversity, antibiotic resistance, and asbestos carcinogenesis. Scientific Reports, 8(1), 8504. https://doi.org/10.1038/s41598-018-26958-5CrossRefGoogle ScholarPubMed
Le Gal, K., Ibrahim, M. X., Wiel, C., Sayin, V. I., Akula, M. K., Karlsson, C., Dalin, M. G., Akyürek, L. M., Lindahl, P., Nilsson, J., & Bergo, M. O. (2015). Antioxidants can increase melanoma metastasis in mice. Science Translational Medicine, 7(308), 308re8. https://doi.org/10.1126/scitranslmed.aad3740CrossRefGoogle Scholar
Lin, F.-H., Chen, C.-H., Cheng, W. T. K., & Kuo, T.-F. (2006). Modified montmorillonite as vector for gene delivery. Biomaterials, 27(17), 33333338. https://doi.org/10.1016/j.biomaterials.2005.12.029CrossRefGoogle ScholarPubMed
Maisanaba, S., Pichardo, S., Puerto, M., Gutiérrez-Praena, D., Cameán, A. M., & Jos, A. (2015). Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environmental Research, 138, 233254. https://doi.org/10.1016/j.envres.2014.12.024CrossRefGoogle ScholarPubMed
McConnochie, K., Bevan, C., Newcombe, R. G., Lyons, J. P., Skidmore, J. W., & Wagner, J. C. (1993). A study of Spanish sepiolite workers. Thorax, 48(4), 370374. https://doi.org/10.1136/thx.48.4.370CrossRefGoogle ScholarPubMed
Moreira, M. A., Ciuffi, K. J., Rives, V., Vicente, M. A., Trujillano, R., Gil, A., Korili, S. A., & de Faria, E. H. (2017). Effect of chemical modification of palygorskite and sepiolite by 3-aminopropyltriethoxisilane on adsorption of cationic and anionic dyes. Applied Clay Science, 135, 394404. https://doi.org/10.1016/j.clay.2016.10.022CrossRefGoogle Scholar
Pastré, D., Pietrement, O., Fusil, S., Landousy, F., Jeusset, J., David, M.-O., Hamon, L., Le Cam, E., & Zozime, A. (2003). Adsorption of DNA to mica mediated by divalent counterions: A theoretical and experimental study. Biophysical Journal, 85, 25072518. https://doi.org/10.1016/S0006-3495(03)74673-6CrossRefGoogle ScholarPubMed
Pastré, D., Hamon, L., Landousy, F., Sorel, I., David, M.-O. O., Zozime, A., Le Cam, E., & Piétrement, O. (2006). Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths. Langmuir, 22(15), 66516660. https://doi.org/10.1021/la053387yCrossRefGoogle ScholarPubMed
Piétrement, O., Castro-Smirnov, F. A., Le Cam, E., Aranda, P., Ruiz-Hitzky, E., & Lopez, B. S. (2018). Sepiolite as a new nanocarrier for DNA transfer into mammalian cells: Proof of concept, issues and perspectives. Chemical Record, 18(7), 849857. https://doi.org/10.1002/tcr.201700078CrossRefGoogle Scholar
Ragu, S., Dardillac, E., Adame Brooks, D., Castro-Smirnov, F. A., Aranda, P., Ruiz-Hitzky, E., & Lopez, B. S. (2020a). Responses of human cells to Sepiolite interaction. Applied Clay Science, 194, 105655. https://doi.org/10.1016/j.clay.2020.105655CrossRefGoogle Scholar
Ragu, S., Matos-Rodrigues, G., & Lopez, B. S. (2020b). Replication stress, DNA damage, inflammatory cytokines and innate immune response. Genes, 11(4), 409. https://doi.org/10.3390/genes11040409CrossRefGoogle ScholarPubMed
Rodríguez-Beltrán, J., Elabed, H., Gaddour, K., Blázquez, J., & Rodríguez-Rojas, A. (2012). Simple DNA transformation in Pseudomonas based on the Yoshida effect. Journal of Microbiological Methods, 89(2), 9598. https://doi.org/10.1016/j.mimet.2012.02.013CrossRefGoogle ScholarPubMed
Rodríguez-Beltrán, J., Rodriguez-Rojas, A., Yubero, E., & Blazquez, J. (2013). The animal food supplement sepiolite promotes a direct horizontal transfer of antibiotic resistance plasmids between bacterial species. Antimicrobial Agents and Chemotherapy, 57(6), 26512653. https://doi.org/10.1128/AAC.02363-12CrossRefGoogle ScholarPubMed
Ruiz-Hitzky, E., Darder, M., Aranda, P., del Burgo, M. Á. M., & del Real, G. (2009). Bionanocomposites as new carriers for influenza vaccines. Advanced Materials, 21, 41674171 http://onlinelibrary.wiley.com/doi/10.1002/adma.200900181/abstractCrossRefGoogle Scholar
Ruiz-Hitzky, E., Darder, M., Wicklein, B., Fernandes, F. M., Castro-Smirnov, F. A., Martín del Burgo, M. A., del Real, G., & Aranda, P. (2012). Advanced biohybrid materials based on nanoclays for biomedical applications. Proceedings SPIE, 8548, 85480D-85480D – 8. https://doi.org/10.1117/12.999995CrossRefGoogle Scholar
Santarén, J. & Alvarez, A. (1994). Assessment of the health effects of mineral dusts. Industrial Minerals, April, 112.Google Scholar
Shi, Y.-F., Tian, Z., Zhang, Y., Shen, H.-B., & Jia, N.-Q. (2011). Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Research Letters, 6(1), 608. https://doi.org/10.1186/1556-276X-6-608CrossRefGoogle ScholarPubMed
Tan, H., Fu, L., & Seno, M. (2010). Optimization of bacterial plasmid transformation using nanomaterials based on the Yoshida effect. International Journal of Molecular Sciences, 11(12), 49614972. https://doi.org/10.3390/ijms11124962CrossRefGoogle ScholarPubMed
Undabeytia, T., Madrid, F., Vázquez, J., & Pérez-Martínez, J. I. (2019). Grafted sepiolites for the removal of pharmaceuticals in water treatment. Clays and Clay Minerals, 67(2), 173182. https://doi.org/10.1007/s42860-019-00013-4CrossRefGoogle Scholar
Wagner, J. C., Griffiths, D. M., & Munday, D. E. (1987). Experimental studies with palygorskite dusts. British Journal of Industrial Medicine, 44(11), 749763.Google ScholarPubMed
Wicklein, B., Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2010). Bioorganoclays based on phospholipids as immobilization hosts for biological species. Langmuir, 26, 52175225. https://doi.org/10.1021/la9036925CrossRefGoogle ScholarPubMed
Wicklein, B., Martín del Burgo, M. Á., Yuste, M., Darder, M., Llavata, C. E., Aranda, P., Ortin, J., del Real, G., & Ruiz-Hitzky, E. (2012). Lipid-based bio-nanohybrids for functional stabilisation of influenza vaccines. European Journal of Inorganic Chemistry, 2012, 51865191 http://onlinelibrary.wiley.com/doi/10.1002/ejic.201200579/abstractCrossRefGoogle Scholar
Wiel, C., Le Gal, K., Ibrahim, M. X., Jahangir, C. A., Kashif, M., Yao, H., Ziegler, D. V., Xu, X., Ghosh, T., Mondal, T., Kanduri, C., Lindahl, P., Sayin, V. I., & Bergo, M. O. (2019). BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell, 178(2), 330345.e22. https://doi.org/10.1016/j.cell.2019.06.005CrossRefGoogle ScholarPubMed
Wilharm, G., Lepka, D., Faber, F., Hofmann, J., Kerrinnes, T., & Skiebe, E. (2010). A simple and rapid method of bacterial transformation. Journal of Microbiological Methods, 80(2), 215216. https://doi.org/10.1016/j.mimet.2009.12.002CrossRefGoogle ScholarPubMed
Wu, H., Shi, Y., Huang, C., Zhang, Y., Wu, J., Shen, H., & Jia, N. (2014). Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing. Journal of Biomaterials Applications, 28(8), 11801189. https://doi.org/10.1177/0885328213501215CrossRefGoogle ScholarPubMed
Yang, D., Peng, S., Hartman, M. R., Gupton-Campolongo, T., Rice, E. J., Chang, A. K., Gu, Z., Lu, G. Q., & Luo, D. (2013). Enhanced transcription and translation in clay hydrogel and implications for early life evolution. Scientific Reports, 3, 3165. https://doi.org/10.1038/srep03165CrossRefGoogle ScholarPubMed
Yoshida, N. (2007). Discovery and application of the Yoshida effect: Nano-sized acicular materials enable penetration of bacterial cells by sliding friction force. Recent Patents on Biotechnology, 1(3), 194201. https://doi.org/10.2174/187220807782330147CrossRefGoogle ScholarPubMed
Yoshida, N., & Sato, M. (2009). Plasmid uptake by bacteria: A comparison of methods and efficiencies. Applied Microbiology and Biotechnology, 83(5), 791798. https://doi.org/10.1007/s00253009-2042-4CrossRefGoogle ScholarPubMed
Yoshida, N., Ikeda, T., Yoshida, T., Sengoku, T., & Ogawa, K. (2001). Chrysotile asbestos fibers mediate transformation of Escherichia coli by exogenous plasmid DNA. FEMS Microbiology Letters, 195(2), 133137.CrossRefGoogle ScholarPubMed