Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-15T19:39:59.335Z Has data issue: false hasContentIssue false

Authigenic Phyllosilicates in the Middle Triassic Kremikovtsi Sedimentary Exhalative Siderite Iron Formation, Western Balkan, Bulgaria

Published online by Cambridge University Press:  28 February 2024

Zhelyazko Damyanov*
Affiliation:
Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 107, 1113, Sofia, Bulgaria
Margarita Vassileva
Affiliation:
Department of Economic Geology, University of Mining and Geology “St. Ivan Rilski”, 1100, Sofia, Bulgaria
*
E-mail of corresponding author: zdamyanov@mail.bg

Abstract

Two distinct assemblages of authigenic phyllosilicates were distinguished in the Kremikovtsi sedimentary exhalative (SEDEX) siderite iron formation (SIF) and noted as important tracers of two styles of mineralization characteristic of this type of ore deposit. Hydrothermal-sedimentary layer silicates are represented by rare occurrences of relict microcrystalline Mg-rich berthierine with a relatively low degree of structural ordering, associated closely with framboidal pyrite as an intergranular matrix cementing sparry siderite grains; the larger silicates are also represented by the diagenetic transformation product of berthierine, chamosite. Berthierine precipitated under anoxic conditions during advanced early diagenesis after chert deposition. Hydrothermal-epigenetic phyllosilicates (berthierine, chamosite, illite-smectite (I-S), and kaolinite) from the barite-sulfide assemblage are characterized by: crystalline and undeformed habits; relatively larger particle size, low-temperature polytypes, low to no mixed layering, and a high degree of crystallinity; absence of impurities and dominant monomineralic aggregates; affiliation to initial open spaces and deposition mainly as vug fillings and linings. They formed under pronounced control by the vuggy porosity of the siderite host caused by the invasion of acid (pH = 3–5), hot (200–230°C) hydrothermal fluids probably at the stage of burial diagenesis of the SIF under relatively stable reducing conditions fluctuating near the sulfide/sulfate stability boundary (logPO2≅−30). The greater Al concentration in hydrothermal solution than in seawater determines the affiliation of phyllosilicates in the Phanerozoic SEDEX SIFs to aluminous species (berthierine, chamosite) unlike low to non aluminous ones (greenalite, stilpnomelane) in the Precambrian IFs. The berthierine compositions, expressed by the Mg/Fe vs. Al/Si ratios, are a sensitive indicator of the geological conditions under which they formed (marine, non-marine, hydrothermal ore and pre-ore), thus allowing the genetic discrimination of this mineral from various localities.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A.L., 1962 Relationships between the mineral association, chemical composition and physical properties of the chlorite series American Mineralogist 47 851870.Google Scholar
Alt, J.C. and Jiang, W.-T., 1991 Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor Geology 19 570573 10.1130/0091-7613(1991)019<0570:HPMLIS>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Andreeva, O.V. Rusinova, O.V. and Volovikova, I.M., 1989 Typomorphic peculiarities of dioctahedral K-micas and mixed-layer formations from low-temperature wall-rock metasomatites Mineralogicheskii zhurnal 11 2132 (in Russian, with English summary).Google Scholar
Arima, M. Fleet, M.E. and Barnett, R.L., 1985 Titanian berthierine: a Ti-rich serpentine-group mineral from the Picton ultramafic dyke, Ontario Canadian Mineralogist 23 213220.Google Scholar
Bailey, S.W., 1988 X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite Clays and Clay Minerals 36 193213 10.1346/CCMN.1988.0360301.CrossRefGoogle Scholar
Bailey, S.W. and Bailey, S.W., 1988 Structures and compositions of other trioctahedral 1:1 phyllosilicates Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America 169188 10.1515/9781501508998-011 Reviews in Mineralogy, 19 .CrossRefGoogle Scholar
Bailey, S.W., 1988 Odinite, a new dioctahedral-trioctahedral Fe3+-rich 1:1 clay mineral Clay Minerals 23 237247 10.1180/claymin.1988.023.3.01.CrossRefGoogle Scholar
Bailey, S.W. and Brown, B.E., 1962 Chlorite polytypism: I. Regular and semi-random one-layer structures American Mineralogist 47 819850.Google Scholar
Bailey, S.W. and Tyler, S.A., 1960 Clay minerals associated with the Lake Superior iron ores Economic Geology 55 150175 10.2113/gsecongeo.55.1.150.CrossRefGoogle Scholar
Battaglia, S., 1999 Applying X-ray geothermometer diffraction to a chlorite Clays and Clay Minerals 47 5463 10.1346/CCMN.1999.0470106.CrossRefGoogle Scholar
Bhattacharyya, D.P., 1983 Origin of berthierine in ironstones Clays and Clay Minerals 31 173182 10.1346/CCMN.1983.0310302.CrossRefGoogle Scholar
Brindley, G.W., 1951 The crystal structure of some chamosite minerals Mineralogical Magazine 29 502525 10.1180/minmag.1951.029.212.04.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., 1961 Kaolin, serpentine, and kindred minerals The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society 51131.Google Scholar
Brindley, G.W., 1982 Chemical compositions of berthierines—a review Clays and Clay Minerals 30 153155 10.1346/CCMN.1982.0300211.CrossRefGoogle Scholar
Brindley, G.W. and Youell, R.F., 1953 Ferrous chamosite and ferric chamosite Mineralogical Magazine 30 5770 10.1180/minmag.1953.030.220.07.CrossRefGoogle Scholar
Brown, B.E. and Bailey, S.W., 1963 Chlorite polytypism. II. Crystal structure of a one-layer Cr-chlorite American Mineralogist 48 4261.Google Scholar
Bubenicek, L. (1961) Recherches sur la constitution et la répartition des minerais de fer dans l’Aalénien de Lorraine. Thèse d’Ingénieur-Docteur, Faculté des Sciences de Nancy, 204 pp.Google Scholar
Curtis, C.D. and Spears, D.A., 1968 The formation of sedimentary iron minerals Economic Geology 63 257270 10.2113/gsecongeo.63.3.257.CrossRefGoogle Scholar
Curtis, C.D. Hughes, C.R. Whiteman, J.A. and Whittle, C.K., 1985 Compositional variation within some sedimentary chlorites and some comments on their origin Mineralogical Magazine 49 375386 10.1180/minmag.1985.049.352.08.CrossRefGoogle Scholar
Damyanov, Z.K., 1996 Genesis of the Kremikovtsi deposit and metallogenic perspectives of the Sredec iron ore region Geologica Balcanica 26 324.CrossRefGoogle Scholar
Damyanov, Z.K., 1998 Ore petrology, whole-rock chemistry and zoning of the Kremikovtsi carbonate-hosted sedimentary exhalative iron(+Mn)-barite-sulfide deposit, Western Balkan, Bulgaria Neues Jahrbuch für Mineralogie Abhandlungen 174 142.CrossRefGoogle Scholar
Deudon, M., 1955 La chamosite orthorhombique du minerai de Sainte-Barbe, couche grise Bulletin Société français de Minéralogie et de Cristallographie 78 475480.CrossRefGoogle Scholar
Deverin, L. (1945) Étude pétrographique des minerais de fer oolithiques du Dogger des Alpes suisses. Beitr. Geologie der Schweiz., Geotech. ser., Lf. 13, 2, 115 pp.Google Scholar
Dickson, F.W. and Tunell, G. (1968) Mercury and antimony deposits associated with active hot springs in the western United States. Pp. 16731701 in: Ore Deposits of the United States, 1933–1967, Volume 2 (Ridge, J.D., editor). American Institute of Mining, Metallurgy and Petroleum Engineering.Google Scholar
Drits, V.A. and Kossowskaya, A.G., 1991 Clay Minerals: Micas, Chlorites Moscow Nauka 176 pp. (in Russian).Google Scholar
Drits, V.A. Plançon, A. Sakharov, B.A. Besson, G. Tsipursky, S.I. and Tchoubar, C., 1984 Diffraction effects calculated for structural models of K-saturated montmorillonite containing different types of defects Clay Minerals 19 541561 10.1180/claymin.1984.019.4.03.Google Scholar
Eberl, D.D. Środoń, J. Lee, M. Nadeau, P.H. and Northrop, H.R., 1987 Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness American Mineralogist 72 914934.Google Scholar
Ellis, A.J. and Barnes, H.L., 1967 The chemistry of some explored geothermal systems Geochemistry of Hydrothermal Ore Deposits New York Holt, Rinehart and Winston, Inc. 465514.Google Scholar
Emery, K.O. Hunt, J.M. Hays, E.E., Degens, E.T. and Ross, D.A., 1969 Thermal brines and ore sediments in the Red Sea: an overview Hot Brines and Recent Heavy Metal Deposits in the Red Sea New York Springer-Verlag 557571 10.1007/978-3-662-28603-6_50.CrossRefGoogle Scholar
von Engelhardt, W., 1942 Die Strukturen von Thuringit, Bavalit und Chamosit und ihre Stellung in der Chlorit-gruppe Zeitschrift für Kristallographie 104 142159.CrossRefGoogle Scholar
Eugster, H.P. and Chou, I.-M., 1973 The depositional environments of Precambrian banded iron-formations Economic Geology 68 11441168 10.2113/gsecongeo.68.7.1144.CrossRefGoogle Scholar
Floran, R.J. and Papike, J.J., 1975 Petrology of the low-grade rocks of the Gunflint iron-formation, Ontario-Minnesota Geological Society of America Bulletin 86 11691190 10.1130/0016-7606(1975)86<1169:POTLRO>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Foster, M.D. (1962) Interpretation of the composition and a classification of the chlorites. U.S. Geological Survey Professional Paper, 414–A, 33 pp.Google Scholar
Halbach, P., 1970 Mineral constituents and facies development of the principal seam horizon of the Franconian Dogger beta in the area of the claim of the “Kleiner Johannes” company near Pegnitz, Upper Franconia Geologische Jahrbuch 88 471507.Google Scholar
Hallimond, A.F., 1939 On the relation of chamosite and daphnite to the chlorite group Mineralogical Magazine 25 441465 10.1180/minmag.1939.025.167.02.CrossRefGoogle Scholar
Harder, H., 1974 Illite mineral synthesis at surface temperatures Chemical Geology 14 241253 10.1016/0009-2541(74)90062-X.CrossRefGoogle Scholar
Harder, H., 1978 Synthesis of iron layer silicate minerals under natural conditions Clays and Clay Minerals 26 6572 10.1346/CCMN.1978.0260108.CrossRefGoogle Scholar
Hayes, J.B., 1970 Polytypism of chlorite in sedimentary rocks Clays and Clay Minerals 18 285306 10.1346/CCMN.1970.0180507.CrossRefGoogle Scholar
Hornibrook, E.R.C. and Longstaffe, F.J., 1996 Berthierine from the Lower Cretaceous Clearwater Formation, Alberta, Canada Clays and Clay Minerals 44 121 10.1346/CCMN.1996.0440101.CrossRefGoogle Scholar
Horton, D.G., 1983 Argillic alteration associated with the Amethyst vein system, Creede mining district, Colorado Urbana, Illinois University of Illinois.Google Scholar
Hower, J. and Mowatt, T.C., 1966 The mineralogy of illites and mixed-layer illite/montmorillonites American Mineralogist 51 825854.Google Scholar
Hughes, C.R., 1987 The composition and origin of layer silicates in iron-formations and ironstones: a preliminary analytical transmission electron microscopical study UK University of Sheffield.Google Scholar
Iijima, A. and Matsumoto, R., 1982 Berthierine and chamosite in coal measures of Japan Clays and Clay Minerals 30 264274 10.1346/CCMN.1982.0300403.CrossRefGoogle Scholar
Inoue, A. and Utada, M., 1983 Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, northeast Japan Clays and Clay Minerals 31 401412 10.1346/CCMN.1983.0310601.CrossRefGoogle Scholar
James, H.L., 1954 Sedimentary facies of iron-formation Economic Geology 49 235293 10.2113/gsecongeo.49.3.235.CrossRefGoogle Scholar
James, H.L. (1966) Chemistry of the iron-rich sedimentary rocks. US Geological Survey Professional Paper, 440–W, 61 pp.Google Scholar
Jiang, W.-T. Peacor, D.R. and Slack, J.F., 1992 Microstructures, mixed layering, and polymorphism of chlorite and retrograde berthierine in the Kidd Creek massive sulfide deposit, Ontario Clays and Clay Minerals 40 501514 10.1346/CCMN.1992.0400503.CrossRefGoogle Scholar
Kalaydzhiev, S., 1982 New data on the structure of Kremikovtsi Ore Field Review of the Bulgarian Geological Society 43 159171 (in Bulgarian with English abstract).Google Scholar
Kalgeropoulos, S.I. and Scott, S.D. (1985) Mineralogy and geochemistry of tuffaceous exhalites (Tetsusekiei) of the Fukazawa mine, Hokuroku district, Japan. Pp. 412432 in: The Kuroko and Related Volcanogenic Massive Sulfide Deposits (Skinner, B.J., editor). Economic Geology, Monograph, 5.Google Scholar
Kastner, M. and Burns, R.G., 1979 Silica polymorphs Marine Minerals Washington, D.C. Mineralogical Society of America 99109 10.1515/9781501508646-007 Reviews in Mineralogy, 6 .CrossRefGoogle Scholar
Keller, W.D., 1988 Authigenic kaolinite and dickite associated with metal sulfides—probable indicators of a regional thermal event Clays and Clay Minerals 36 153158 10.1346/CCMN.1988.0360209.CrossRefGoogle Scholar
Kepezhinskas, K.B., 1965 Statistical Analysis of Chlorites and their Paragenetic Types Moscow Nauka 135 pp. (in Russian).Google Scholar
Kimberley, M.M., 1989 Exhalative origins of iron formations Ore Geology Reviews 5 13145 10.1016/0169-1368(89)90003-6.CrossRefGoogle Scholar
Klekl, L.V., 1979 Regularities of chamosite distribution in bauxites of the Belgorod District of the Kursk magnetic anomaly Lithology and Mineral Resources 14 377382 (in Russian).Google Scholar
Kodama, H. and Foscolos, A.E., 1981 Occurrence of berthierine in Canadian Arctic desert soils Canadian Mineralogist 19 279283.Google Scholar
Kotelnikov, D.D. and Konyukhov, A.I., 1986 Clay Minerals in Sedimentary Rocks Moscow Nedra 247 pp. (in Russian).Google Scholar
Laird, J. and Bailey, S.W., 1988 Chlorites: metamorphic petrology Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America 405453 10.1515/9781501508998-016 Reviews in Mineralogy, 19 .CrossRefGoogle Scholar
Lu, G. McCabe, C. Henry, D.J. and Schedl, A., 1994 Origin of hematite carrying a Late Paleozoic remagnetization in a quartz sandstone bed from the Silurian Rose Hill Formation, Virginia, USA Earth and Planetary Science Letters 126 235246 10.1016/0012-821X(94)90109-0.CrossRefGoogle Scholar
MacGregor, M., Lee, G.W. and Wilson, G.V. (1920) The Iron Ores of Scotland. British Geological Survey Memoir Special Reports on Mineral Resources, 11, 240 pp.Google Scholar
Maxwell, D.T. and Hower, J., 1967 High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt series American Mineralogist 52 843857.Google Scholar
Maynard, J.B., 1983 Geochemistry of Sedimentary Ore Deposits New York Springer-Verlag 10.1007/978-1-4613-9493-8 305 pp.CrossRefGoogle Scholar
Maynard, J.B., 1986 Geochemistry of oolitic iron ores, an electron microprobe study Economic Geology 81 14731483 10.2113/gsecongeo.81.6.1473.CrossRefGoogle Scholar
McDowell, S.D. and Elders, W.A., 1980 Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA Contributions to Mineralogy and Petrology 74 293310 10.1007/BF00371699.CrossRefGoogle Scholar
Nemecz, E., 1981 Clay Minerals Budapest Akadémiai Kiadó 547 pp.Google Scholar
Nikolskaya, N.K. Goilo, E.A. and Frank-Kamenetsky, V.A., 1986 X-ray diffraction peculiarities of disordered one-layer orthogonal berthierine Mineralogicheskii zhurnal 8 8993 (in Russian with English summary).Google Scholar
Novák, F. Vtelensky, J. Losert, J. Kupka, F. and Valcha, Z., 1959 Orthochamosit, ein neues Mineral aus den hydrothermalen Erzgängen von Kank bei Kutná Hora (Kuttenberg) in der Tschechoslowakei Geologie 8 159167.Google Scholar
Odin, G.S. Bailey, S.W. Amouric, M. Fröhlich, F. Waychunas, G.A. and Odin, G.S., 1988 Mineralogy of the verdine facies Green Marine Clays Amsterdam Elsevier 159206 Developments in Sedimentology, 45 .CrossRefGoogle Scholar
Omelyanenko, B.I. Volovikova, I.M. Drits, V.A. Zvyagin, B.B. Andreeva, O.V. and Sakharov, B.A., 1982 On the content of term sericite Izvestiya Akademii Nauk SSSR, seriya Geologicheskaya 5 6987 (in Russian).Google Scholar
Panayotov, V., Dragov, P. and Kolkovski, B., 1974 The Kremikovtsi iron ore deposit Twelve Ore Deposits in Bulgaria Sofia Publishing House of the Bulgarian Academy of Science 257266 4th IAGOD Symposium, Varna.Google Scholar
Perelman, A.I., 1989 Geochemistry Moscow Vysshaya shkola 528 pp. (in Russian).Google Scholar
Popov, P., 1989 Tectonic position and structures of the Upper Cretaceous mineralizations in Banat-Srednogorie and Western Balkan metallogenic zones Sofia University of Mining & Geology 543 pp. (in Bulgarian).Google Scholar
Porrenga, D.H. and Bailey, S.W., 1966 Clay minerals in recent sediments of the Niger delta Clays and Clay Minerals, Proceedings of the 14th National Conference New York Pergamon Press 221233 10.1016/B978-0-08-011908-3.50021-9.CrossRefGoogle Scholar
Protich, M., 1955 Étude minéralogique des phyllites de quelques minerais de fer de Serbie (Yougoslavie) Bulletin Société français de Minéralogie et de Cristallographie 78 528534.CrossRefGoogle Scholar
Rohrlich, V. Price, N.B. and Calvert, S.E., 1969 Chamosite in the recent sediments of Loch Etive, Scotland Journal of Sedimentary Petrology 39 624631.Google Scholar
Rude, P.D. and Aller, R.C., 1989 Early diagenetic alteration of lateritic particle coatings in Amazon continental shelf sediments Journal of Sedimentary Petrology 59 704716.Google Scholar
Rusinova, O.V. and Rusinov, V.L. (1980) Structural features of chlorites from epithermal ore deposits. Pp. 281291 in: Scientific Bases and Utilization of the Typomorphism of Minerals. Proceedings of the XI IMA meeting, Novosibirsk. Nauka, Moscow (in Russian with English abstract).Google Scholar
Rusinova, O.V. Rusinov, V.L. and Korzhinskii, D.S., 1986 Compositional variations, polytypism, and formation conditions of dioctahedral K-micas Metasomatism, Mineralogy, and Genetic Questions of Volcanic-Hosted Gold and Silver Deposits Moscow Nauka 4159 (in Russian).Google Scholar
Rusinova, O.V. Rusinov, V.L. Troneva, N.V. and Korzhinskii, D.S., 1986 Composition, some structural features, and formation conditions of wall-rock alteration and ore chlorites and berthierines Metasomatism, Mineralogy, and Genetic Questions of Volcanic-Hosted Gold and Silver Deposits Moscow Nauka 540 (in Russian).Google Scholar
Schultz, R.W., 1966 Lower Carboniferous cherty ironstones at Tynagh, Ireland Economic Geology 61 311342 10.2113/gsecongeo.61.2.311.CrossRefGoogle Scholar
Shilin, A.V. Kotelnikov, D.D. Solodkova, N.A. and Vachugova, L.I., 1979 On the diagnostics and genesis of chamosite in ancient sedimentary rocks Vestnik Moskovskogo Universiteta, seriya Geologiya 4 4958 (in Russian).Google Scholar
Slack, J.F. Jiang, W.-T. Peacor, D.R. and Okita, P.M., 1992 Hydrothermal and metamorphic berthierine from the Kidd Creek volcanogenic massive sulfide deposit, Timmins, Ontario Canadian Mineralogist 30 11271142.Google Scholar
Środoń, J. Eberl, D.D. and Bailey, S.W., 1984 Illite Micas Washington, D.C. Mineralogical Society of America 495544 10.1515/9781501508820-016 Reviews in Mineralogy, 13 .CrossRefGoogle Scholar
Sudo, T., 1943 On some low temperature hydrous silicates found in Japan Bulletin of the Chemical Society of Japan 18 281329 10.1246/bcsj.18.281.CrossRefGoogle Scholar
Sudo, T. and Shimoda, S., 1978 Clays and Clay Minerals of Japan Amsterdam Elsevier 326 pp.Google Scholar
Taylor, K.G., 1990 Berthierine from the non-marine Wealden (Early Cretaceous) sediments of south-east England Clay Minerals 25 391399 10.1180/claymin.1990.025.3.13.CrossRefGoogle Scholar
Thurrell, R.G., Sergeant, G.A. and Young, B.R. (1970) Chamosite in Weald Clay from Horsham, Sussex. Natural Environmental Research Council, Report 70/7.Google Scholar
Toth, T.A. and Fritz, S.J., 1997 An Fe-berthierine from a Cretaceous laterite: Part I. Characterization Clays and Clay Minerals 45 564579 10.1346/CCMN.1997.0450408.CrossRefGoogle Scholar
Tronkov, D. and Damyanov, Z., 1993 Triassic fossil remains in the siderite ore of the Kremikovtsi iron ore deposit Geologica Balcanica 23 34.CrossRefGoogle Scholar
Tvaltschrelidze, A.G. and Scheglov, V.I., 1990 A mineralogical-geochemical model of vein barite ore-genesis Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 119 2134 (in Russian, with English abstract).Google Scholar
Tyler, S.A. and Bailey, S.W., 1961 Secondary glauconite in the Biwabic iron-formation of Minnesota Economic Geology 56 10331044 10.2113/gsecongeo.56.6.1033.CrossRefGoogle Scholar
Vassileff, L., 1993 Pre-Late Cretaceous collides in Bulgaria Review of the Bulgarian Geological Society 54 119 (in Bulgarian with English abstract).Google Scholar
Velde, B., 1985 Clay Minerals. A Physico-Chemical Explanation of their Occurrence Amsterdam Elsevier Developments in Sedimentology, 40 .Google Scholar
Velde, B. Raoult, J.-F. and Leikine, M., 1974 Metamorphosed berthierine pellets in Mid-Cretaceous rocks from north-eastern Algeria Journal of Sedimentary Petrology 44 12751280.Google Scholar
Walker, J.R., 1989 Polytypism of chlorite in very low grade metamorphic rocks American Mineralogist 74 738743.Google Scholar
Walker, J.R., 1993 Chlorite polytype geothermometry Clays and Clay Minerals 41 260267 10.1346/CCMN.1993.0410212.CrossRefGoogle Scholar
Warren, E.A. and Curtis, C.D., 1989 The chemical composition of authigenic illite within two sandstone reservoirs as analysed by ATEM Clay Minerals 24 137156 10.1180/claymin.1989.024.2.03.CrossRefGoogle Scholar
Weiss, Z. and Durovic, S., 1983 Chlorite polytypism. II. Classification and X-ray identification of trioctahedral polytypes Acta Crystallographica B39 552557 10.1107/S0108768183002955.CrossRefGoogle Scholar
Weissberg, B.G. Browne, P.L. Seward, T.M. and Barnes, H.L., 1979 Ore metals in active geothermal systems Geochemistry of Hydrothermal Ore Deposits 2nd New York John Wiley & Sons 738780.Google Scholar
White, D.E. and Barnes, H.L., 1967 Mercury and base-metal deposits associated with thermal mineral waters Geochemistry of Hydrothermal Ore Deposits New York Holt, Rinehart and Winston, Inc. 575631.Google Scholar
White, S.H. Huggett, J.M. and Shaw, H.F., 1985 Electron-optical studies of phyllosilicate intergrowths in sedimentary and metamorphic rocks Mineralogical Magazine 49 413423 10.1180/minmag.1985.049.352.12.CrossRefGoogle Scholar
Yau, Y.-C. Peacor, D.R. Beane, R.E. Essene, E.J. and McDowell, S.D., 1988 Microstructures, formation mechanisms, and depth-zoning of phyllosilicates in geothermally altered shales, Salton Sea, California Clays and Clay Minerals 36 110 10.1346/CCMN.1988.0360101.Google Scholar
Yershova, Z.P. Nikitina, A.E. Perfilev, Y.D. Babeshkin, A.M. and Bailey, S.W., 1976 Study of chamosites by gamma-resonance (Mössbauer) spectroscopy Proceedings of the International Clay Conference, 1975, Mexico City Wilmette, Illinois Applied Publishing 211219.Google Scholar
Zhabin, A.G. Samsonova, N.S. and Isakovich, I.Z., 1987 Mineralogical Studies of Wall-rock Alteration Halos Moscow Nedra 159 pp. (in Russian).Google Scholar