Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-10T20:49:03.101Z Has data issue: false hasContentIssue false

Apparent Dissolution During Ultrasonic Dispersion of Allophanic Soils and Soil Fractions

Published online by Cambridge University Press:  02 April 2024

Mauricio Escudey
Affiliation:
Departamento de Química, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 5659, Correo 2, Santiago, Chile
María de la Luz Mora
Affiliation:
Departamento de Química, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 5659, Correo 2, Santiago, Chile
Patricia Díaz
Affiliation:
Departamento de Química, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 5659, Correo 2, Santiago, Chile
Gerardo Galindo
Affiliation:
Departamento de Química, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 5659, Correo 2, Santiago, Chile

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Note
Copyright
Copyright © 1989, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Escudey, M., Ervin, J. and Galindo, G., 1986 Effect of iron oxide dissolution treatment on the isoelectric point of allophanic soils Clays & Clay Minerals 34 108110.CrossRefGoogle Scholar
Escudey, M. and Galindo, G., 1983 Effect of iron oxide coatings on electrophoretic mobility and dispersion of al-lophane J. Colloid Interface Sci 93 7883.CrossRefGoogle Scholar
Galindo, G., 1974 Electric charges, sorption of phosphate and cation-exchange equilibria in Chilean Dystrandepts Riverside, California Univ. California 452.Google Scholar
Gil-Llambias, F. J. and Escudey-Castro, A. M., 1982 Use of zero point charge measurements in determining the apparent surface coverage of Molybdene in MoO3/γAl2O3 catalysts J. Chem. Soc. Chem. Commun. 478479.CrossRefGoogle Scholar
Goldberg, S. and Glaubig, R. A., 1987 Effect of saturating cation, pH, and aluminum and iron oxide on the flocculation ofkaolinite and montmorillonite Clays & Clay Minerals 35 220227.CrossRefGoogle Scholar
Hinds, A. A. and Lowe, L. E., 1980 Dispersion and dissolution effects during ultrasonic dispersion of Gleysolic soils in water and in electrolytes Can. J. Soil Sci 60 329335.CrossRefGoogle Scholar
Hunter, R. J., 1981 Zeta Potential in Colloid Science: Principles and Applications London Academic Press 59124.CrossRefGoogle Scholar
Kunze, G. W. and Black, C. A., 1965 Pretreatment for mineralogical analysis Methods of Soil Analysis. Part I, Agronomy, Vol. 9 Madison, Wisconsin Amer. Soc. Agron. 568577.Google Scholar
Manley, E. P., Chesworth, W. and Evans, L. J., 1987 The solution chemistry of podzolic soils from the eastern Canadian shield: A thermodynamic interpretation of the mineral phases controlling soluble AP+ and H4SiO4 J. Soil Sci 38 3951.CrossRefGoogle Scholar
McKeague, J. A. and Schuppli, P. A., 1982 Changes in concentration of iron and aluminium in pyrophosphate extracts of soil and composition of sediment resulting from ultracentrifugation in relation to spodic horizon criteria Soil Sci 134 265270.CrossRefGoogle Scholar
Mehra, O. P., Jackson, M. L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals New York Pergamon Press 317327.Google Scholar
Stumm, W. and Morgan, J. J., 1981 Aquatic Chemistry New York Wiley 599684.Google Scholar
Tadros, Th F and Lyklema, J., 1968 Adsorption of potential-determining ions at the silica-aqueous electrolyte interface and the role of some cations J. Electroanal. Chem 17 267275.CrossRefGoogle Scholar