Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-21T05:40:59.432Z Has data issue: false hasContentIssue false

An Assessment of the Surface Properties of Milled Attapulgite Using Inverse Gas Chromatography

Published online by Cambridge University Press:  01 January 2024

L. Boudriche
Affiliation:
Centre de Recherche Scientifique et Technique en Analyse Physico-Chimique (C.R.A.P.C), BP 248, Alger Rp, 16004, Alger, Algeria Laboratiore d’Etude Physico-Chimique des Matériaux et Application à l’Environnement, Faculté de Chimie, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Alger, Algeria
B. Hamdi
Affiliation:
Laboratiore d’Etude Physico-Chimique des Matériaux et Application à l’Environnement, Faculté de Chimie, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Alger, Algeria
Z. Kessaïssia
Affiliation:
Laboratiore d’Etude Physico-Chimique des Matériaux et Application à l’Environnement, Faculté de Chimie, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Alger, Algeria
R. Calvet*
Affiliation:
Ecole des Mines d’Albi Carmaux, Campus Jarlard, 81013 Albi CEDEX 09, France
A. Chamayou
Affiliation:
Ecole des Mines d’Albi Carmaux, Campus Jarlard, 81013 Albi CEDEX 09, France
J. A. Dodds
Affiliation:
Ecole des Mines d’Albi Carmaux, Campus Jarlard, 81013 Albi CEDEX 09, France
H. Balard
Affiliation:
Laboratoire de Chimie Physique, ENSISA-W, 11, rue Werner, 68093 Mulhouse CEDEX, France
*
* E-mail address of corresponding author: rachel.calvet@mines-albi.fr

Abstract

The most common means of reducing the particle size of solids is by grinding, a process which can affect the surface properties and the behavior of the solid in later stages (granulation, compaction, etc.), and which can influence the end-use properties of the final product. Inverse gas chromatography (IGC) measurements were used here to evaluate the influence of grinding, in a ball mill, on attapulgite. The milling experiments were performed in dry media for various periods. After 30 min of grinding, significant decreases in the particle size and specific surface areas were observed when calculated using different probes. No noticeable variation in the surface properties was observed by IGC either at infinite dilution or at finite concentration, however. In particular, the distribution functions of the adsorption energies (DFAE), giving information about the surface heterogeneity for both an apolar probe (octane) and a polar probe (isopropanol), remained unchanged, regardless of the grinding time. The stability of the surface energy with respect to the grinding process was seen to be related to the particular fibrous structure of the attapulgite clay.

Type
Article
Copyright
Copyright © Clays and Clay Minerals 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balard, H., 1997 Estimation of the surface energetic heterogeneity of a solid by inverse gas chromatography Langmuir 13 12601269 10.1021/la951526d.CrossRefGoogle Scholar
Balard, H. Saada, A. Hartmann, J. Aouadj, O. and Papirer, E., 1996 Estimation of the surface energetic heterogeneity of fillers by inverse gas chromatography Makromolekulare Symposium 108 6380 10.1002/masy.19961080107.CrossRefGoogle Scholar
Balard, H. Aouadj, O. and Papirer, E., 1997 Monitoring, by inverse gas chromatography, of the variation of the surface energetic heterogeneity of ground muscovite samples Langmuir 13 12511255 10.1021/la951528y.CrossRefGoogle Scholar
Balard, H. Brendlé, E. Papirer, E. and Mittal, K., 2000 Determination of the acid-base properties of solid surfaces using inverse gas chromatography: Advantages and limitations Acid-Base Interactions: Relevance to Adhesion Science and Technology Utrecht, The Netherlands VSP 299316.Google Scholar
Balard, H. Maafa, D. Santini, A. and Donnet, J.B., 2008 Study by inverse gas chromatography of the surface properties of milled graphites Journal of Chromatography A 1198 173180 10.1016/j.chroma.2008.05.012.CrossRefGoogle ScholarPubMed
Bradley, W.F., 1940 The structural scheme of attapulgite American Mineralogist 25 405410.Google Scholar
Brendlé, E. and Papirer, E., 1997 A new topological index for molecular probes used in inverse gas chromatography for the surface nanorugosity evaluation Journal of Colloid and Interface Science 194 207216 10.1006/jcis.1997.5104.CrossRefGoogle Scholar
Brendlé, E. Ozil, F. Balard, H. Barthel, H., Auner, N. Weiss, J., 2005 Adsorption of water on fumed silica Organosilicon Chemistry VI — From Molecules to Materials Weinheim, Germany Wiley 888894.Google Scholar
Chahi, A. Petit, S. and Decarreau, A., 2002 Infrared evidence of dioctahedral-trioctahedral site occupancy in palygorskite Clays and Clay Minerals 50 306313 10.1346/00098600260358067.CrossRefGoogle Scholar
Conder, J.R. and Young, C.L., 1979 Physicochemical Measurements by Gas Chromatography New York Wiley Interscience 385390.Google Scholar
Dorris, G.M. and Gray, D.G., 1979 Adsorption, spreading pressure and London force interactions of hydrocarbons on cellulose and wood fiber surfaces Journal of Colloid and Interface Science 71 93104 10.1016/0021-9797(79)90224-8.CrossRefGoogle Scholar
Galán, E., 1996 Properties and applications of palygorskitesepiolite clays Clay Minerals 31 443453 10.1180/claymin.1996.031.4.01.CrossRefGoogle Scholar
Galán, E. and Carretero, I., 1999 A new approach to compositional limits for sepiolite and palygorskite Clays and Clay Minerals 47 399409 10.1346/CCMN.1999.0470402.CrossRefGoogle Scholar
Garcia-Romero, E. Suarez Barrios, M. and Bustillo Revuelta, M.A., 2004 Characteristics of Aa Mg-palygorskite in Miocene rocks, Madrid Basin (Spain) Clays and Clay Minerals 52 484494 10.1346/CCMN.2004.0520409.CrossRefGoogle Scholar
Hrachova, J. Komadel, P. and Fajnor, V.S., 2007 The effect of mechanical treatment on the structure of montmorillonite Materials Letters 61 33613365 10.1016/j.matlet.2006.11.063.CrossRefGoogle Scholar
Mckeown, D.A. Post, J.E. and Etz, E.S., 2002 Vibrational analysis of palygorskite and sepiolite Clays and Clay Minerals 50 667680 10.1346/000986002320679549.CrossRefGoogle Scholar
Metraux, C. Grobety, B. and Ulmer, P., 2002 Filling of chrysotile nanotubes with metals Journal of Materials Research 17 11291135 10.1557/JMR.2002.0167.CrossRefGoogle Scholar
Murray, H.H., 2000 Traditional and new applications for kaolin, smectite, and palygorskite: A general overview Applied Clay Science 17 207221 10.1016/S0169-1317(00)00016-8.CrossRefGoogle Scholar
Papirer, E. Roland, P. Nardin, M. and Balard, H., 1986 Variation of the surface energy characteristics of mica (muscovite) upon grinding Journal of Colloid and Interface Science 113 6266 10.1016/0021-9797(86)90205-5.CrossRefGoogle Scholar
Roland, P., 1986 Contribution à l’étude du broyage des amiantes et du mica muscovite .Google Scholar
Rudzinski, W. Jagiello, J. and Grillet, Y., 1982 Physical adsorption of gases on heterogeneous solid surfaces: evaluation of the adsorption energy distribution from adsorption isotherms and heats of adsorption Journal of Colloid and Interface Science 87 478491 10.1016/0021-9797(82)90345-9.CrossRefGoogle Scholar
Saada, A., 1995 Origine des différences de propriétés de surface responsables des contrastes de mouillabilité des minéraux argileux des gisements pétroliers .Google Scholar
Saada, A. Papirer, E. Balard, H. and Siffert, B., 1995 Determination of the surface properties of illites and kaolinites by inverse gas chromatography Journal of Colloid and Interface Science 175 212218 10.1006/jcis.1995.1448.CrossRefGoogle Scholar
Suarez, M. and Garcia-Romero, E., 2006 FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet Applied Clay Science 31 154163 10.1016/j.clay.2005.10.005.CrossRefGoogle Scholar
Suraj, G. Iyer, C.S.P. Rugmini, S. and Lalithambika, M., 1997 The effect of micronization on kaolinites and their sorption behaviour Applied Clay Science 12 111130 10.1016/S0169-1317(96)00044-0.CrossRefGoogle Scholar