Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-01T05:01:20.799Z Has data issue: false hasContentIssue false

Alunite, Natroalunite and Hydrated Halloysite in Carlsbad Cavern and Lechuguilla Cave, New Mexico

Published online by Cambridge University Press:  28 February 2024

Victor J. Polyak
Affiliation:
Department of Geosciences, Box 41053, Texas Tech University, Lubbock, Texas 79409-1053
Necip Güven
Affiliation:
Department of Geosciences, Box 41053, Texas Tech University, Lubbock, Texas 79409-1053

Abstract

Members of an alunite-natroalunite solid solution series occur in intimate association with hydrated halloysite in deposits within caves of the Guadalupe Mountains, namely Carlsbad Cavern and Lechuguilla Cave. The alunite and natroalunite crystals consist of cube-like rhombs; crystal diameters range from 0.5 to 8 µm. This mineral association is found in sediments within bedrock pockets, solution cavity fills, floor deposits and wall residues. Sulfur stable isotope values (δ34S, CTD) for cave alunite and natroalunite are negative [+0.1 to −28.9 per mill (‰); n = 12 and mean = 16.8‰] and are comparable to the cave gypsum and native sulfur values reported by other investigators. The association of alunite/natroalunite with hydrated halloysite in these cave deposits suggests that the cave-forming waters contained significant concentrations of sulfuric acid. Formation of these minerals is related to the excavation of the carbonate rocks that formed Carlsbad Cavern, Lechuguilla Cave and other caves of the Guadalupe Mountains. The sulfuric acid-bearing waters, when exposed to clay-rich sediments, converted clay minerals and quartz to alunite/natroalunite and hydrated halloysite.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambers, C.P. and Murray, H.H.. 1995. The role of carbonate bedrock in the formation of indianaite halloysitic clays. Indiana Geological Survey Bulletin 65. Bloomington, IN: Indiana University. 29 p.Google Scholar
Appleman, D.E. and Evans, H.T.. 1973. Job 9214: Indexing and least-squares refinement of powder diffraction data. US Geological Survey. Computer contribution 20. US National Technical Information Service. Document PB2-16188. 65 p.Google Scholar
Bailey, S.W.. 1993. Review of the structural relationships of the kaolin minerals. In: Murray, H.H., Bundy, W.M., Harvey, C.C., editors. Kaolin genesis and utilization. Boulder, CO: The Clay Minerals Society. p 2542.Google Scholar
Benoit, P.H.. 1987. Adaption to microcomputer of the Appleman-Evans program for indexing and least-squares refinement of powder-diffraction data for unit-cell dimensions. Am Mineral 72: 10181019.Google Scholar
Berthier, P.. 1826. Analyse de l'halloysite. Ann Chim Phys 32: 332334.Google Scholar
Bird, M.I., Chivas, A.R. and McDougall, I.. 1990. An isotopic study of surficial alunite in Australia: 2. Potassium-argon geochronology. Chem Geol 80: 133145.Google Scholar
Bretz, J.H.. 1949. Carlsbad Caverns and other caves of the Guadalupe block, New Mexico. J Geol 57: 447463.CrossRefGoogle Scholar
Buck, M.J., Ford, D.C. and Schwarcz, H.P.. 1994. Classification of cave gypsum deposits derived from oxidation of H2S. In: Sasowsky, I.D., Palmer, M.V., editors. Breakthroughs in karst geomicrobiology and redox geochemistry. Special publication 1, Symposium of the Karst Waters Institute; 1984 Feb. 16-19; Colorado Springs, CO. Charles Town, WV: Karst Waters Inst. p 59.Google Scholar
Chitale, D.V. and Güven, N.. 1987. Natroalunite in a laterite profile over Deccan Trap Basalts at Matanumad, Kutch, India. Clays Clay Miner 35: 196202.CrossRefGoogle Scholar
Cunningham, K.I., Northup, D.E., Pollastro, W.G. and LaRock, E.J.. 1995. Bacteria, fungi and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ Geol 25: 28.CrossRefGoogle Scholar
Davies, W.E. and Moore, G.W.. 1957. Endellite and hydromagnesite from Carlsbad Caverns. Nat Speleol Soc Bull 19: 2427.Google Scholar
Davis, D.. 1980. Cavern development in the Guadalupe Mountains: a critical review of recent hypotheses. Nat Speleol Soc Bull 42: 4248.Google Scholar
Ford, D.C. and Williams, P.W.. 1992. Karst geomorphology and hydrology. New York: Chapman and Hall. 601 p.Google Scholar
Goldbery, R.. 1980. Early diagenetic, Na-alunite in Miocene algal mat intertidal facies, Ras Sudar, Sinai. Sedimentology 27: 189198.CrossRefGoogle Scholar
Hill, C.A.. 1981. Speleogenesis of Carlsbad Caverns and other caves of the Guadalupe Mountains. In: Beck, B.F., editor. Proceedings of the 8th International Congress of Speleologers; Bowling Green, KY. p 143144.Google Scholar
Hill, C.A.. 1987. Geology of Carlsbad Caverns and other caves in the Guadalupe Mountains, New Mexico and Texas. New Mex Bur Mines Miner Resour Bull 117. 150 p.CrossRefGoogle Scholar
Hill, C.A.. 1990. Sulfuric acid speleogenesis of Carlsbad Cavern and its relationship to hydrocarbons. Delaware Basin, New Mexico and Texas. Am Assoc Petrol Geol Bull 74: 16851694.Google Scholar
Hill, C.A.. 1995. Sulfur redox reactions: hydrocarbons, native sulfur, Mississippi Valley-type deposits, and sulfuric acid karst, Delaware Basin, New Mexico and Texas. Environ Geol 25: 1623.CrossRefGoogle Scholar
Hill, C.A. and Forti, P.. 1986. Cave minerals of the world. Huntsville, AL: National Speleological Society. 238 p.Google Scholar
Holler, H.. 1967. Experimentelle bildung von alunit-jorosit durch die einwirkung von shwefelsaure auf mineralien und gesteine. Contrib Mineral Petrol 15: 309329.CrossRefGoogle Scholar
Jagnow, D.H.. 1977. Geologic factors influencing speleogenesis in the Capitan Reef complex, New Mexico and Texas [MS thesis]. Albuquerque, NM: Univ New Mexico. 197 p.Google Scholar
Kato, T.. 1987. Further refinement of the goyazite structure. Mineral J 13: 390396.CrossRefGoogle Scholar
Keller, W.D., Gentile, R.J. and Raesman, A.L.. 1967. Allophane and Na-rich alunite from kaolinitic nodules in shale. J Sed Petrol 37: 215220.Google Scholar
Khalaf, F.I.. 1990. Diagenetic alunite in clastic sequences, Kuwait, Arabian Gulf. Sedimentology 37: 155164.CrossRefGoogle Scholar
Kirkland, D.W.. 1982. Origin of gypsum deposits in Carlsbad Caverns, New Mexico. New Mex Geol 4: 2021.CrossRefGoogle Scholar
Long, D.T., Fegan, N.E., McKee, J.D., Lyons, W.B., Hines, M.E. and Macumber, P.G.. 1992. Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia. Chem Geol 96: 183202.CrossRefGoogle Scholar
Modreski, P.J.. 1989. Mineralogical studies of some caves in Colorado and New Mexico. New Mex Geol 11: 50.Google Scholar
Palmer, A.N. and Palmer, M.V.. 1992. Geochemical and petrologic observations in Lechuguilla Cave, New Mexico. In: Ogden, A.E., editor. Abstracts of the 1992 Friend of Karst; Cookeville, TN. p 2526.Google Scholar
Pisarowicz, J.A.. 1994. Cueva de Villa Luz—An active case of H2S speleogenesis. In: Sasowsky, I.D., Palmer, M.V., editors. Breakthroughs in karst geomicrobiology and redox geochemistry. Special publication 1, Symposium of the Karst Waters Institute; 1984 Feb. 16-19; Colorado Springs, CO. Charles Town, WV: Karst Waters Inst. p 59.Google Scholar
Polyak, V.J. and Güven, N.. 1995. Dickite in caves of the Guadalupe Mountains in New Mexico. 32nd Annual Meeting of the Clay Minerals Society. Programs and Abstracts. p 100.Google Scholar
Ross, C.S., Bergquist, H.R., Monroe, W.H., Fahey, J.J. and Ross, M.. 1968. Natroalunite in upper Cretaceous sedimentary rocks, north-central Texas. J Sed Petrol 38: 11551165.Google Scholar
Ross, C.S. and Kerr, P.E.. 1935. Halloysite and allophane. US Geological Survey Professional Paper 185-G. 148 p.CrossRefGoogle Scholar
Rouchy, J. and Pierre, C.. 1987. Authigenic natroalunite in middle Miocene evaporites from the Gulf of Suez (Gemsa, Egypt). Sedimentology 34: 807812.CrossRefGoogle Scholar
Rye, R.O., Bethke, P.M. and Wasserman, M.D.. 1992. The stable isotope geochemistry of acid sulfate alteration. Econ Geol 87: 225262.CrossRefGoogle Scholar
Spirakis, C. and Cunningham, K.I.. 1992. Genesis of sulfur deposits in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. In: Wessel, G., Winberley, B., editors. Native sulfur—Developments in geology and exploration. Am Inst Min Metal Petrol Eng p 139145.Google Scholar
Stoffregen, R.E. and Alpers, C.N.. 1992. Observations on the unit-cell dimensions, H2O contents, and δD values of natural and synthetic alunite. Am Mineral 77: 10921098.Google Scholar
Stoffregen, R.E., Rye, R.O. and Wasserman, M.D.. 1994. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange. Geochim Cosmochim Acta 58: 917929.CrossRefGoogle Scholar
Van Everdingen, R.O., Shakur, M.A. and Krouse, H.R.. 1985. Role of corrosion by H2SO4 fallout in cave development in a travertine deposit—Evidence from sulfur and oxygen isotopes. Econ Geol 49: 205211.Google Scholar
Wasserman, M.D., Rye, R.O., Bethke, P.M. and Arribas, A.. 1990. Methods for separation of alunite from associated minerals and subsequent analysis of D, 18OOH, 18OSOi4, and 34S. Geol Soc Am Abstr Prog 22: A135.Google Scholar