Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T18:57:40.328Z Has data issue: false hasContentIssue false

Adsorption and Desorption of N-Methyl 8-Hydroxy Quinoline Methyl Sulfate on Smectite and the Potential Use of The Clay-Organic Product as an Ultraviolet Radiation Collector

Published online by Cambridge University Press:  02 April 2024

M. A. Vicente
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, Apartado 257, 37080-Salamanca, Spain
M. Sánchez-Camazano
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, Apartado 257, 37080-Salamanca, Spain
M. J. Sánchez-Martín
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, Apartado 257, 37080-Salamanca, Spain
M. del Arco
Affiliation:
Departamento de Química Inorgánica, Universidad de Salamanca, Facultad de Farmacia, 37007-Salamanca, Spain
C. Martín
Affiliation:
Departamento de Química Inorgánica, Universidad de Salamanca, Facultad de Farmacia, 37007-Salamanca, Spain
V. Rives
Affiliation:
Departamento de Química Inorgánica, Universidad de Salamanca, Facultad de Farmacia, 37007-Salamanca, Spain
J. Vicente-Hernández
Affiliation:
Departamento de Química, Facultad de Ciencias, Universidad Autónoma, Madrid, Spain

Abstract

The interaction between N-methyl 8-hydroxy quinoline methyl sulfate, a drug that absorbs erymathogenic near-ultraviolet radiation, and smectite was studied by X-ray powder diffraction (XRD) and adsorption and desorption techniques. From the adsorption studies, (1) the amount of the drug adsorbed by Na-smectite increased with the pH of the solution to pH 6.5 and then decreased as the pH was further increased; (2) the maximum amount adsorbed at pH 6.5 was 102 meq/100 g of clay; and (3) the maximum amount of drug adsorbed, according to the adsorption isotherms at pH 4, was close to the cation-exchange capacity of the smectite (80 meq/100 g). The XRD studies showed that the drug molecules were adsorbed in the interlayer space of smectite and that cation exchange was the chief mechanism responsible for these interactions. The results of the adsorption-desorption cycles of the drug by smectite showed that this clay is a good support for this compound. In addition, an alternative method was developed to obtain the intercalation compound to avoid the standard method of exchange by impregnation. The method consisted of grinding a mixture of the drug with the clay. The characteristics of the complex thus formed were similar to those of the complex formed by exchange at pH 4 to 7.

To gain insight into the pharmacological properties of the intercalation compound studied, its capacity for absorption of visible and near-ultraviolet light was investigated. The diffuse reflectance spectrum of the complex showed intense absorption bands, absent or weak in the spectra of the pure drug or the untreated clay, at 250, 290, and ~390 nm.

Resumen

Resumen

Se ha estudiado mediante difracción de rayos X (DRX) y técnicas de adsorción-desorción la interacción entre el metil-sulfato de N-metil 8-hidroxiquinolina, una droga que absorbe las radiaciones erimatógenas de la zona ultravioleta próxima, con la esmectita. A partir de los estudios de adsorción se ha encontrado que: (1) la cantidad de droga adsorbida por la esmectita sódica aumenta con el pH hasta 6.5 y luego disminuye; (2) la máxima cantidad adsorbida a pH 6.5 fue de 102 meq/100 g de arcilla; y (3) la cantidad máxima adsorbida, según los datos de la isoterma medida a pH 4, es similar a la capacidad de cambio de la esmectita (80 meq/100 g). Los estudios de DRX señalan que las moléculas de droga se adsorben en el espacio interlaminar de la esmectita y que el mecanismo principal de la interacción esmectita-droga es el cambio catiónico. Los resultados de los estudios de ciclos de adsorción-desorción señalan que esta arcilla es un buen soporte para este compuesto. Además, se ha desarrollado un método alternativo para obtener compuestos de intercalación que evitan el método convencional de intercambio por impregnación. El método consiste en la molienda de una mezcla de la droga y de la arcilla. Las características del complejo así formado son similares a las del complejo formado por intercambio a pH entre 4 y 7.

Con objeto de profundizar en el conocimiento de las propiedades farmacológicas del compuesto de intercalación estudiado, se ha ivestigado su capacidad de absorción de luz en la zona visible y ultravioleta próxima. El espectro de reflectancia difusa del complejo pretensa intensas bandas de absorción, ausentes o débiles en los espectros de la droga pura o de la arcilla, sola, a 250, 290, y ~390 nm.

Type
Research Article
Copyright
Copyright © 1989, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, C. C., Zachara, J. M. and Schmidt, R. L., 1987 Quinoline sorption on Na-montmorillonite: Contributions of the protonated and neutral species Clays & Clay Minerals 35 121128.CrossRefGoogle Scholar
Brindley, G. W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Faller, J. W., Mueller, A. and Phillips, J. P., 1964 Mero-cyanines with chelating properties Talanta 11 641646.CrossRefGoogle Scholar
Frei, R. W., 1976 Diffuse reflectance spectroscopy; applications, standards, and calibration (with special reference to chromatography) J. Res. Natl. Bur. Stad., Sect. A 80 551565.CrossRefGoogle Scholar
Frei, R. W., Frodyma, N. N. and Lieu, V. T., 1975 Diffuse reflectance spectroscopy Compr. Anal. Chem. 4 263354.Google Scholar
González-Zapatero, M., 1966 Complejos de adsorción de minérales de la arcilla con fosfato de alquilo Salamanca, Spain University of Salamanca.Google Scholar
Grim, R. E., 1962 Applied Clay Mineralogy New York McGraw-Hill.CrossRefGoogle Scholar
Grim, R. E. and Güven, N., 1978 Bentonites: Geology, Mineralogy, Properties and Uses Amsterdam Elsevier.Google Scholar
Jones, C. E. and Klier, K., 1972 Optical and spectroscopic methods for the study of surfaces Annu. Rev. Mater. Sci. 2 132.CrossRefGoogle Scholar
Kellerman, R. (1979) Spectroscopy in Heterogeneous Catalysis: W. M. Delgass, G. L. Haller, R. Kellerman, and J. H. Lunsford, eds., Academic Press, New York, 86131.Google Scholar
McGinity, J. W. and Lach, J. L., 1976 In vitro adsorption of various pharmaceuticals to montmorillonite J. Pharm. Sci. 65 896902.CrossRefGoogle ScholarPubMed
Mortland, M. M., 1970 Clay-organic complexes and interactions Adv. Agron. 22 75117.CrossRefGoogle Scholar
Sánchez-Camazano, M., Sánchez-Martin, M. J., Vicente-Hernandez, M. T. and Dominguez-Gil, A., 1987 Adsorp-tion-desorption of Sotalol hydrochloride by Na-montmo-rillonite Clay Miner. 22 121128.CrossRefGoogle Scholar
Sánchez-Martín, M. J., Sánchez-Camazano, M., Vicente-Hernández, M. T. and Domínguez-Gil, A., 1981 Interaction of propanolol hydrochloride with montmorillonite J. Pharm. Pharmacol. 33 408410.CrossRefGoogle ScholarPubMed
Simmons, E. L., 1974 Application of diffuse reflectance spectroscopy to the chemistry of transition metal coordination compounds Coord. Chem. Rev. 14 181196.CrossRefGoogle Scholar
Theng, B. K. G., 1974 The Chemistry of Clay-Organic Reactions New York Wiley 221319.Google Scholar
Vicente, J., Hernández, P. and Hernández, L., 1985 Determination espectrofotométrica de metilsulfato de N-me-til-8-hidroxiquinoleina An. Real Acad. Farm. (Madrid) 51 301308.Google Scholar
Vicente-Hernández, M. T., Sánchez-Camazano, M., Sánchez-Martin, M. J. and Dominguez-Gil, A., 1983 Caracterización de la montmorillonita Albagel Ciencia Ind. Farm. 2 335338.Google Scholar