Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-02T18:25:47.325Z Has data issue: false hasContentIssue false

Activity/Composition Relations among Silicates and Aqueous Solutions: II. Chemical and Thermodynamic Consequences of Ideal Mixing of Atoms on Homological Sites in Montmorillonites, Illites, and Mixed-Layer Clays

Published online by Cambridge University Press:  02 April 2024

Per Aagaard*
Affiliation:
Department of Geology and Geophysics, University of California, Berkeley, California 94720
Harold C. Helgeson
Affiliation:
Department of Geology and Geophysics, University of California, Berkeley, California 94720
*
1Present address: Institute of Geology, University of Oslo, Oslo 3, Norway.

Abstract

The activities of thermodynamic components of clay minerals corresponding in composition to pyrophyllite, muscovite, paragonite, and margarite were computed from chemical analyses reported in the literature assuming ideal mixing of atoms on homological sites in the minerals. These activities were then used to generate stability fields for smectites, illites, and mixed-layer clays on logarithmic activity diagrams representing equilibrium among minerals and aqueous solutions at 25°C and 1 bar. Comparative analysis indicates that the approach affords close approximation of both mineral and water compositions in geologic systems.

Резюме

Резюме

Рассаитывались активности термодинамических компонентов глинистых минералов, соответствующих по составу пирофиллиту, мусковиту, парагониту и Маргариту. Расчет был проведен на основании опубликованных данных химических анализов, предполагая идеальную смесь атомов в гомологических местах минералов. Полученные величины активностей использовались для определения полей стабильности смектитов, иллитов, и переслаивающихся глин на логаритмических диаграммах активностей, представляющих равновесие между минералами и водным раствором при температуре 25°С и давлении 1 бар. Сравнительный анализ указывает на то, что этот подход хорошо описывает состав минералов и воды в геологических системах. [E.G.]

Resümee

Resümee

Die Aktivitäten der thermodynamischen Komponenten von Tonmineralen, die in ihrer Zusammensetzung Pyrophyllit, Muskovit, Paragonit, und Margarit entsprechen, wurden aus chemischen Analysen, die in der Literatur angegeben sind, mittels Computer berechnet, wobei eine ideale Mischung von Atomen auf homologen Plätzen in den Mineralen angenommen wird. Diese Aktivitäten wurden dann verwendet, um die Stabilitätsbereiche von Smektiten, Illiten und Wechsellagerungstonen in logarithmischen Diagrammen aufzustellen, die Gleichgewicht zwischen den Mineralen und den wässrigen Lösungen bei 25°C und 1 Bar darstellen. Vergleichende Analysen deuten darauf hin, daß dieses Vorgehen zu einer guten Annäherung an die Mineral- und Wasserzusammensetzung in geologischen Systemen führt. [U.W.]

Résumé

Résumé

Les activités des composés thermodynamiques de minéraux argileux correspondant en composition à la pyrophyllite, muscovite, paragonite, et margarite ont été computés à partir d'analyses chimiques rapportées dans la littérature, supposant un mélange idéal d'atomes sur des sites homologues dans les minéraux. Ces activités ont alors été utilisées pour générer des champs d’équilibre pour des smectites, illites et argiles à couches mélangées sur des diagrammes d'activité logarithmique représentant l’équilibre entre les minéraux et des solutions aqueuses à 25°C et 1 bar. L'analyse comparative indique que cette approche permet une approximation proche des compositions minérales et aqueuses dans des systèmes géologiques. [D.J.]

Type
Research Article
Copyright
Copyright © 1983, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschuler, Z. S., Dwornik, E. J. and Kramer, H., 1963 Transformation of montmorillonite to kaolinite during weathering Science 141 148152.CrossRefGoogle ScholarPubMed
Bailey, S. W., 1975 Cation ordering and pseudosymmetry in layer silicates Amer. Mineral. 60 175187.Google Scholar
Berner, R. A., 1971 Principles of Chemical Sedimentology .Google Scholar
Brown, G. and Norrish, K., 1952 Hydrous micas Min. Mag. 29 929932.Google Scholar
Burnham, C. W. and Radoslovich, E. W., 1964 Crystal structures of coexisting muscovite and paragonite Carnegie Inst. Wash. Yearbook 63 232236.Google Scholar
Coey, J. M. D., 1975 The clay minerals; use of Mössbauer effect to characterize them and study their transformations Proc. Intern. Conf. Mössbauer Spectr., Cracow. .Google Scholar
Dibble, W. E. Jr. and Tiller, W. A., 1981 Kinetic model of zeolite paragenesis in tuffaceous sediments Clays & Clay Minerals 29 323330.CrossRefGoogle Scholar
Ericsson, T., Wappling, R. and Punakivi, K., 1977 Mössbauer spectroscopy applied to clay and related minerals Geol. For. Forhandlingar 99 229244.Google Scholar
Feth, J. H., Roberson, C. E. and Polzer, W. L., 1964 Sources of mineral constituents in water from granitic rocks, Sierra Nevada, California and Nevada U.S. Geol. Surv. Water-Supp. Pap. .Google Scholar
Garrels, R. M. and Christ, C. L., 1965 Solutions, Minerals and Equilibria New York Harper and Row.Google Scholar
Garrels, R.M., Tardy, Y., van Olphen, H. and Veniale, F., 1982 Born-Haber cycles for interlayer cations of micas Proc. 7th Int. Clay Conf., Bologna and Pavia, 1981 Amsterdam Elsevier 423440.Google Scholar
Garrels, R. M. and Wollast, R., 1978 Discussion Amer. J. Sci. 278 14691474.CrossRefGoogle Scholar
Gatineau, L., 1964 Structure réele de la muscovite. Répartition des substitutions isomorphes Bull. Soc. Fr. Minéral. Crystallogr. 87 321355.Google Scholar
Gieskes, J. M., Lawrence, J. R. and Hollister, C. D., 1976 Interstitial water studies, Leg 35 Initial Reports of the Deep Sea Drilling Project 35 407424.CrossRefGoogle Scholar
Guggenheim, S. and Bailey, S. W., 1975 Refinement of the margarite structure in subgroup symmetry Amer. Mineral. 60 10231029.Google Scholar
Harder, H., 1976 Nontronite synthesis at low temperatures Chem. Geol. 18 169180.CrossRefGoogle Scholar
Harder, H., 1977 Clay mineral formation under lateritic weathering conditions Clay Miner. 12 281288.CrossRefGoogle Scholar
Hay, R. L. and Mumpton, F. A., 1977 Geology of zeolites in sedimentary rocks Mineralogy and Geology of Natural Zeolites 5364.CrossRefGoogle Scholar
Helgeson, H. C., 1969 Thermodynamics of hydrothermal systems at elevated temperatures and pressures Amer. J. Sci. 267 724804.CrossRefGoogle Scholar
Helgeson, H. C. and Aagaard, P. (1984) Activity/composition relations among silicates and aqueous solutions. I. Thermodynamics of intrasite mixing and substitutional order/disorder in minerals: Amer. J. Sci. 284 (in press).Google Scholar
Helgeson, H. C., Brown, T. H. and Leeper, R. H., 1969 Handbook of Theoretical Activity Diagrams Depicting Chemical Equilibria in Geologic Systems Involving an Aqueous Phase at One Atm. and 0°C to 300°C San Francisco Freeman, Cooper & Co..Google Scholar
Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock forming minerals: Amer. J. Sci. 278–A, 229 pp.Google Scholar
Helgeson, H. C., Kirkham, D. H. and Flowers, G. C., 1981 Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties of 5 kb and 600°C Amer. J. Sci. 281 12491516.CrossRefGoogle Scholar
Helgeson, H. C. and MacKenzie, F. T., 1970 Silicate-sea water equilibria in the ocean system Deep-Sea Res. 17 877892.Google Scholar
Helgeson, H. C. and Murphy, W. M., 1983 Calculation of mass transfer among minerals and aqueous solutions as a function of time and surface area in geochemical processes. I. Computational approach Math. Geol. 15 109130.CrossRefGoogle Scholar
Hovis, G. L., MacKenzie, W. S. and Zussman, J., 1974 A solution calorimetric and X-ray investigation of Al-Si distribution in monoclinic potassium feldspars The Feldspars New York Crane, Russak, and Co., Inc. 114144.Google Scholar
Hower, J. and Mowatt, T. C., 1966 The mineralogy of illites and mixed-layer illite/montmorillonites Amer. Mineral. 51 825854.Google Scholar
Hower, J., Eslinger, E. V., Hower, M. E. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geol. Soc. Amer. Bull. 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Kastner, M., 1971 Authigenic feldspars in carbonate rocks Amer. Mineral. 56 14031443.Google Scholar
Kastner, M. and Gieskes, J. M., 1976 Interstitial water profiles and sites of diagenetic reactions, Leg 35, DSDP, Bellingshausen Abyss/Plain Earth Plan. Sci. Lett. 33 1120.CrossRefGoogle Scholar
Kittrick, J. A., 1971 Stability of montmorillonites: I. Belle Fourche and Clay Spur montmorillonites Soil Sci. Soc. Amer. Proc. 35 140145.CrossRefGoogle Scholar
Lippmann, F. and Konta, J., 1979 Stability diagrams involving clay minerals Proc. 8th Conf. on Clay Mineralogy and Petrology, Teplice 153171.Google Scholar
Mattigod, S. V. and Sposito, G., 1978 Improved method for estimating the standard free energies of formation (δGf,298.15) of smectites Geochim. Cosmochim. Acta 42 17531762.CrossRefGoogle Scholar
Merino, E. and Ransom, B., 1982 Free energies of formation of illite solid solutions and their compositional dependence Clays & Clay Minerals 30 2939.CrossRefGoogle Scholar
Norton, D., 1974 Chemical mass transfer in the Rio Tanama system, west-central Puerto Rico Geochim. Cosmochim. Acta 38 267277.CrossRefGoogle Scholar
Nriagu, J. O., 1975 Thermochemical approximations for clay minerals Amer. Mineral. 60 834839.Google Scholar
Page, R., 1977 Alteration-mineralization history of the Butte, Montana, ore deposit, and transmission electron microscopy of phyllosilicate alteration phases Berkeley Ph.D. thesis, University of California.Google Scholar
Perry, E. and Hower, J., 1970 Burial diagenesis in Gulf Coast pelitic sediments Clays & Clay Minerals 18 165177.CrossRefGoogle Scholar
Reynolds, R. C. Jr. and Hower, J., 1970 The nature of interlayering in mixed-layer illite-montmorillonites Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Ross, C. S. and Hendricks, S. B., 1945 Minerals of the montmorillonite group U.S. Geol. Surv. Prof. Pap. 205–B 2379.Google Scholar
Routson, R.C. and Kittrick, J.A., 1971 Illite solubility Soil Sci. Soc. Amer. Proc. 35 714718.CrossRefGoogle Scholar
Schultz, L. G., 1969 Lithium and potassium absorption, dehydroxylation temperature, and structural water 3 content of aluminous smectites Clays & Clay Minerals 17 115149.CrossRefGoogle Scholar
Smith, C. L. and Drever, J. I., 1976 Controls on the chemistry of springs at Teels Marsh, Mineral County, Nevada Geochim. Cosmochim. Acta 40 10811094.CrossRefGoogle Scholar
Smith, J. V., Yoder, H. S. Jr., 1956 Experimentaland theoretical studies of the mica polymorphs Min. Mag. 31 209235.Google Scholar
Stanley, K. O. and Benson, L. V., 1979 Early diagenesis of High Plaines Tertiary vitric and arkosic sandstone, Wyoming and Nebraska Soc. Econ. Pal. Mineral., Spec. Publ. 26 401423.Google Scholar
Stoessell, R. K., 1979 A regular solution site-mixing model for illites Geochim. Cosmochim. Acta 43 11511159.CrossRefGoogle Scholar
Stoessell, R. K., 1981 Refinements in a site-mixing model for illites: local electrostatic balance and the quasi-chemical approximation Geochim. Cosmochim. Acta 45 17331741.CrossRefGoogle Scholar
Sudo, T., Shimoda, S., Yotsumoto, H. and Saburo, A., 1981 Electron Micrographs of Clay Minerals Amsterdam Elsevier.Google Scholar
Tardy, Y. and Fritz, B., 1981 An ideal solution model for calculating solubility of clay minerals Clay Miner. 16 361373.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R. M., 1974 A method of estimating the Gibbs energies of formation of layer silicates Geochim. Cosmochim. Acta 38 11011116.CrossRefGoogle Scholar
Thompson, J. B. Jr., Waldbaum, D. R., Hovis, G. L., MacKenzie, W. S. and Zussman, J., 1974 Thermodynamic properties related to ordering in end-member feldspars The Feldspars New York Crane, Russak and Co., Inc. 218248.Google Scholar
Thorstenson, D. C. and Plummer, L. N., 1977 Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase—Example: The magnesian calcites Amer. J. Sci. 277 12031223.CrossRefGoogle Scholar
Truesdell, A. H. and Christ, C. L., 1968 Cation exchange in clays interpreted by regular solution theory Amer. J. Sci. 266 402412.CrossRefGoogle Scholar
Velde, B., 1977 Clays and Clay Minerals in Natural and Synthetic Systems .Google Scholar
Velde, B. and Hower, J., 1963 Petrological significance of illite polymorphism in Paleozoic sedimentary rocks Amer. Mineral. 48 12391254.Google Scholar
Weaver, C. E. and Pollard, L. D., 1973 The Chemistry of Clay Minerals Amsterdam Elsevier.Google Scholar
Welton, J. E., 1980 Petrology and diagenesis of the Early Miocene Skooner Gulch and Gallaway Formations, Point Arena, California .Google Scholar
Wilson, M. D. and Pittman, E. P., 1977 Authigenic clays in sandstones: recognition and influence on reservoir properties and paleoenvironmental analysis J. Sed. Petrol. 47 331.Google Scholar
Zen, E. A., 1962 Problem of the thermodynamic status of the mixed layer minerals Geochim. Cosmochim. Acta 26 10551067.CrossRefGoogle Scholar
Zvyagin, B.B., 1967 Electron-Diffraction Analysis of Clay Mineral StructuresProblem of the thermodynamic status of the mixed layer minerals New York Plenum Press.Google Scholar