Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T04:01:49.117Z Has data issue: false hasContentIssue false

A Review of the Reactivity of Phosphatase Controlled by Clays and Clay Minerals: Implications for Understanding Phosphorus Mineralization in Soils

Published online by Cambridge University Press:  01 January 2024

Ai Chen
Affiliation:
Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Yuji Arai*
Affiliation:
Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract

Mineralizable macronutrients (e.g. C, N, P, and S) are sorbed readily (i.e. adsorption and precipitation) in clays and clay minerals. Phosphorus (P) is one of the limiting macronutrients in soils because both phosphate and organic P undergo chemisorption in soil minerals. Furthermore, phosphatases that mineralize the organic P species tend to partition into soil minerals, suppressing the interactions between organic P and phosphatase. Adsorbed phosphatase on the mineral surfaces can regulate the enzyme activity and influence the biochemical properties of the enzyme (e.g. kinetics, conformation, and stability), affecting the P cycle in the terrestrial environment. Phosphatase–mineral interactions are widely reported to decrease the enzyme activity while enhancing the enzyme stability (e.g. thermal and proteolysis stability). Contradictory findings have also been reported. Specific enzymes, mineral characteristics, and reaction conditions are probably responsible for various reactivity (e.g. mineralization). The purpose of the present review was to summarize current and past investigations of acid and alkaline phosphatase sorption in clays and clay minerals and to examine phosphatase chemical properties (e.g. kinetic activity, thermal and proteolysis stability) and factors (e.g. pH, saturating cations of the mineral, enzyme structure, and mineral surface polarity) influencing the phosphatase-mineral interaction. Lastly, also reviewed is the application of phosphatase–mineral interactions with some expansion to other enzymes as an indication of potential future application for phosphatase and future research needs.

Type
Review
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Chun-Hui Zhou

References

Abel, S., Ticconi, C. A., Delatorre, C. A. Phosphate sensing in higher plants Physiologia Plantarum 2002 115 18 10.1034/j.1399-3054.2002.1150101.xCrossRefGoogle ScholarPubMed
Abelson, P. H. A potential phosphate crisis Science 1999 283 2015 10.1126/science.283.5410.2015CrossRefGoogle ScholarPubMed
Alef, K., Nannipieri, P. Alef, K., Nannipieri, P. Enzyme activities Methods in applied soil microbiology and biochemistry 1995 Acedemic Press 311373Google Scholar
Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amézaga, I., Garbisu, C. Soil enzyme activities as biological indicators of soil health Reviews on Environmental Health 2003 18 6573 10.1515/REVEH.2003.18.1.65CrossRefGoogle ScholarPubMed
Allison, S. D. Soil minerals and humic acids alter enzyme stability: Implications for ecosystem processes Biogeochemistry 2006 81 361373 10.1007/s10533-006-9046-2CrossRefGoogle Scholar
Alori, E. T., Glick, B. R., Babalola, O. O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture Frontiers in Microbiology 2017 8 971 10.3389/fmicb.2017.00971CrossRefGoogle ScholarPubMed
An, N., Zhou, C. H., Zhuang, X. Y., Tong, S. D., Yu, H. W. Immobilization of enzymes on clay minerals for biocatalysts and biosensors Applied Clay Science 2015 114 283296 10.1016/j.clay.2015.05.029CrossRefGoogle Scholar
Anderson, G. Khasawneh chairman, F. E., Sample, E. C., Kamprath, E. J. Assessing organic phosphorus in soils The role of phosphorus in agriculture 1980 American Society of Agronomy 411431Google Scholar
Arenberg, M. R., Arai, Y. Sparks, D. L. Uncertainties in soil physicochemical factors controlling phosphorus mineralization and immobilization processes Advances in agronomy, 154 2019 Acedemic Press 153200Google Scholar
Asmar, F., Singh, T., Gahoonia, , Nielsen, N. E. Barley genotypes differ in activity of soluble extracellular phosphatase and depletion of organic phosphorus in the rhizosphere soil Plant and Soil 1995 172 117122 10.1007/BF00020865CrossRefGoogle Scholar
Bariola, P. A., Howard, C. J., Crispin, B., Verburg, M. T., Jaglan, V. D., Green, P. J. The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation The Plant Journal 1994 6 673685 10.1046/j.1365-313X.1994.6050673.xCrossRefGoogle ScholarPubMed
Basso, A., Serban, S. Industrial applications of immobilized enzymes— A review Molecular Catalysis 2019 479 110607 10.1016/j.mcat.2019.110607CrossRefGoogle Scholar
Beghin, J. C., & Nogueira, L. (2021). A perfect storm in fertilizer markets. https://cap.unl.edu/crops/perfect-storm-fertilizer-markets. Accessed 25 Apr 2023.Google Scholar
Blake, R. E., O’Neil, J. R., Surkov, A. V. Biogeochemical cycling of phosphorus: Insights from oxygen isotope effects of phosphoenzymes American Journal of Science 2005 305 596620 10.2475/ajs.305.6-8.596CrossRefGoogle Scholar
Bollag, J. M., Mertz, T., Otjen, L. Anderson, T. A., Coats, J. R. Role of microorganisms in soil bioremediation Bioremediation through rhizosphere technology 1994 American Chemical Society 210 10.1021/bk-1994-0563.ch001CrossRefGoogle Scholar
Boyd, S. A., Mortland, M. M. Urease activity on a clay-organic complex Soil Science Society of America Journal 1985 49 619622 10.2136/sssaj1985.03615995004900030018xCrossRefGoogle Scholar
Boyd, S. A., Mortland, M. M. Bollag, J. M., Stotzky, G. Enzyme interactions with clays and clay-organic matter complexes Soil biochemistry 1990 Marcel Dekker, Inc. 128Google Scholar
Bünemann, E. K. Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients Soil Biology and Biochemistry 2008 40 21162129 10.1016/j.soilbio.2008.03.001CrossRefGoogle Scholar
Burns, R. G. Enzyme activity in soil: Location and a possible role in microbial ecology Soil Biology and Biochemistry 1982 14 423427 10.1016/0038-0717(82)90099-2CrossRefGoogle Scholar
Burns, R. G., Dick, R. P. Enzymes in the environment: Activity, ecology and applications 2002 Marcel DekkerCrossRefGoogle Scholar
Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., Weintraub, M. N., Zoppini, A. Soil enzymes in a changing environment: Current knowledge and future directions Soil Biology and Biochemistry 2013 58 216234 10.1016/j.soilbio.2012.11.009CrossRefGoogle Scholar
Calabi-Floody, M., Velásquez, G., Gianfreda, L., Saggar, S., Bolan, N., Rumpel, C., Mora, M. L. Improving bioavailability of phosphorous from cattle dung by using phosphatase immobilized on natural clay and nanoclay Chemosphere 2012 89 648655 10.1016/j.chemosphere.2012.05.107CrossRefGoogle ScholarPubMed
Carrasco, M. S., Rad, J. C., González-Carcedo, S. Immobilization of alkaline phosphatase by sorption on Na-sepiolite Bioresource Technology 1995 51 175181 10.1016/0960-8524(94)00115-HCrossRefGoogle Scholar
Chen, A., Arai, Y. Sparks, D. L. Current uncertainties in assessing the colloidal phosphorus loss from soil Advances in agronomy, 163 2020 Acedemic Press 117151Google Scholar
Chen, C. R., Condron, L. M., Davis, M. R., Sherlock, R. R. Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus Radiata D. Don.) Soil Biology and Biochemistry 2002 34 487499 10.1016/S0038-0717(01)00207-3CrossRefGoogle Scholar
Chen, J., Guo, Z., Xin, Y., Gu, Z., Zhang, L., Guo, X. Effective remediation and decontamination of organophosphorus compounds using enzymes: From rational design to potential applications Science of the Total Environment 2023 867 161510 10.1016/j.scitotenv.2023.161510CrossRefGoogle ScholarPubMed
Chin, J. P., McGrath, J. W., Quinn, J. P. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling Current Opinion in Chemical Biology 2016 31 5057 10.1016/j.cbpa.2016.01.010CrossRefGoogle ScholarPubMed
Chu, H. M., Guo, R. T., Lin, T. W., Chou, C. C., Shr, H. L., Lai, H. L., Tang, T. Y., Cheng, K. J., Selinger, B. L., Wang, AHJ Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis Structure 2004 12 20152024 10.1016/j.str.2004.08.010CrossRefGoogle ScholarPubMed
Coleman, J. E. Structure and mechanism of alkaline phosphatase Annual Review of Biophysics and Biomolecular Structure 1992 21 441483 10.1146/annurev.bb.21.060192.002301CrossRefGoogle ScholarPubMed
Compton, J. E., Cole, D. W. Fate and effects of phosphorus additions in soils under N2-fixing red alder Biogeochemistry 2001 53 225247 10.1023/A:1010646709944CrossRefGoogle Scholar
Copeland, R. A. Enzymes: A practical introduction to structure, mechanism, and data analysis 2000 Wiley-VCH, Inc. 10.1002/0471220639CrossRefGoogle Scholar
Cordell, D., White, S. Life’s bottleneck: Sustaining the world’s phosphorus for a food secure future Annual Review of Environment and Resources 2014 39 161188 10.1146/annurev-environ-010213-113300CrossRefGoogle Scholar
Cornish-Bowden, A. (1979). Inhibitors and activators. In Cornish-Bowden, A. (ed.), Fundamentals of enzyme kinetics (pp. 7398). Butterworths, Oxford, UK.CrossRefGoogle Scholar
Cross, H., & Yariv, S. (1979). Colloid geochemistry of clay minerals. In Cross, H., & Yariv, S. (eds.), Geochemistry of colloid systems (pp. 247285). Berlin Heidenberg, New York: Springer-Verlag.Google Scholar
Dalal, R. C. Soil organic phosphorus Advances in Agronomy 1977 29 83117 10.1016/S0065-2113(08)60216-3CrossRefGoogle Scholar
Datta, R., Anand, S., Moulick, A., Baraniya, D., Pathan, S. I., Rejsek, K., Vranova, V., Sharma, M., Sharma, D., Kelkar, A., Formanek, P. How enzymes are adsorbed on soil solid phase and factors limiting its activity: A review International Agrophysics 2017 31 287302 10.1515/intag-2016-0049CrossRefGoogle Scholar
Daughton, C. G., Cook, A. M., Alexander, M. Biodegradation of phosphonate toxicants yields methane or ethane on cleavage of the C-P bond FEMS Microbiology Letters 1979 5 9193 10.1111/j.1574-6968.1979.tb03254.xCrossRefGoogle Scholar
Daumann, L. J., Larrabee, J. A., Ollis, D., Schenk, G., Gahan, L. R. Immobilization of the enzyme GpdQ on magnetite nanoparticles for organophosphate pesticide bioremediation Journal of Inorganic Biochemistry 2014 131 17 10.1016/j.jinorgbio.2013.10.007CrossRefGoogle ScholarPubMed
Dick, W. A., Tabatabai, M. A. Kinetics and activities of phosphatase-clay complexes Soil Science 1987 143 515 10.1097/00010694-198701000-00002CrossRefGoogle Scholar
Dionisio, G., Madsen, C. K., Holm, P. B., Welinder, K. G., Jorgensen, M., Stoger, E., Arcalis, E., Brinch-pedersen, H. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice Plant Physiology 2011 156 10871100 10.1104/pp.110.164756CrossRefGoogle ScholarPubMed
Dzionek, A., Wojcieszynska, D., Guzik, U. Natural carriers in bioremediation: A review Electronic Journal of Biotechnology 2016 23 2836 10.1016/j.ejbt.2016.07.003CrossRefGoogle Scholar
Faba-Rodriguez, R., Gu, Y., Salmon, M., Dionisio, G., Brinch-Pedersen, H., Brearley, C. A., Hemmings, A. M. Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants Plant Communications 2022 3 100305 10.1016/j.xplc.2022.100305CrossRefGoogle ScholarPubMed
Fahs, S., Lujan, P., Kohn, M. Approaches to study phosphatases ACS Chemical Biology 2016 11 29442961 10.1021/acschembio.6b00570CrossRefGoogle ScholarPubMed
Fange, D., Lovmar, M., Pavlov, M. Y., Ehrenberg, M. Identification of enzyme inhibitory mechanisms from steady-state kinetics Biochimie 2011 93 16231629 10.1016/j.biochi.2011.05.031CrossRefGoogle ScholarPubMed
Garske, B., Ekardt, F. Economic policy instruments for sustainable phosphorus management: Taking into account climate and biodiversity targets Environmental Sciences Europe 2021 33 56 10.1186/s12302-021-00499-7CrossRefGoogle Scholar
Ghiaci, M., Aghaei, H., Soleimanian, S., Sedaghat, M. E. Enzyme immobilization: Part 2. Immobilization of alkaline phosphatase on Na-bentonite and modified bentonite Applied Clay Science 2009 43 308316 10.1016/j.clay.2008.09.011CrossRefGoogle Scholar
Gianfreda, L., Bollag, J. M. Effect of soils on the behavior of immobilized enzymes Soil Science Society of America Journal 1994 58 1672 10.2136/sssaj1994.03615995005800060014xCrossRefGoogle Scholar
Gianfreda, L., Rao, M. A. Potential of extra cellular enzymes in remediation of polluted soils: A review Enzyme and Microbial Technology 2004 35 339354 10.1016/j.enzmictec.2004.05.006CrossRefGoogle Scholar
Gianfreda, L., Rao, M. A., Sannino, F., Saccomandi, F., Violante, A. Enzymes in soil: Properties, behavior and potential applications Developments in Soil Science 2002 28B 301327 10.1016/S0166-2481(02)80027-7CrossRefGoogle Scholar
Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M. C., Seoane, S. Different approaches to evaluating soil quality using biochemical properties Soil Biology and Biochemistry 2005 37 877887 10.1016/j.soilbio.2004.10.003CrossRefGoogle Scholar
Hassan, M. E., Yang, Q., Xiao, Z., Liu, L., Wang, N., Cui, X., Yang, L. Impact of immobilization technology in industrial and pharmaceutical applications 3 Biotech 2019 9 440 10.1007/s13205-019-1969-0CrossRefGoogle ScholarPubMed
Häussling, M., Marschner, H. Organic and inorganic soil phosphates and acid phosphatase activity in the rhizosphere of 80-year-old Norway spruce [Picea abies (L.) Karst.] trees Biology and Fertility of Soils 1989 8 128133 10.1007/BF00257756CrossRefGoogle Scholar
Hegeman, C. E., Grabau, E. A. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings Plant Physiology 2001 126 15981608 10.1104/pp.126.4.1598CrossRefGoogle ScholarPubMed
Hoehamer, C. F., Mazur, C. S., Wolfe, N. L. Purification and partial characterization of an acid phosphatase from Spirodela oligorrhiza and its affinity for selected organophosphate pesticides Journal of Agricultural and Food Chemistry 2005 53 9097 10.1021/jf040329uCrossRefGoogle ScholarPubMed
Hong, Y. K., Kim, J. W., Lee, S. P., Yang, J. E., Kim, S. C. Heavy metal remediation in soil with chemical amendments and its impact on activity of antioxidant enzymes in Lettuce (Lactuca sativa) and soil enzymes Applied Biological Chemistry 2020 63 42 10.1186/s13765-020-00526-wCrossRefGoogle Scholar
Huang, Q., Shindo, H. Effects of copper on the activity and kinetics of free and immobilized acid phosphatase Soil Biology and Biochemistry 2000 32 18851892 10.1016/S0038-0717(00)00162-0CrossRefGoogle Scholar
Huang, Q., Liang, W., Cai, P. Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol Colloids and Surfaces B: Biointerfaces 2005 45 209214 10.1016/j.colsurfb.2005.08.011CrossRefGoogle ScholarPubMed
Huang, Q., Zhu, J., Qiao, X., Cai, P., Rong, X., Liang, W., Chen, W. Conformation, activity and proteolytic stability of acid phosphatase on clay minerals and soil colloids from an Alfisol Colloids and Surfaces B: Biointerfaces 2009 74 279283 10.1016/j.colsurfb.2009.07.031CrossRefGoogle ScholarPubMed
Hughes, J. D., Simpson, G. H. Arylsulphatase–clay interactions. II The effect of kaolinite and montmorillonite on arylsulphatase activity Australian Journal of Soil Research 1978 16 3540 10.1071/SR9780035CrossRefGoogle Scholar
Hussain, S. I., Phillips, L. A., Hu, Y., Frey, S. K., Geuder, D. S., Edwards, M., Lapen, D. R., Ptacek, C. J., Blowes, D. W. Differences in phosphorus biogeochemistry and mediating microorganisms in the matrix and macropores of an agricultural clay loam soil Soil Biology and Biochemistry 2021 161 108365 10.1016/j.soilbio.2021.108365CrossRefGoogle Scholar
Ito, A., Wagai, R. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies Scientific Data 2017 4 111 10.1038/sdata.2017.103CrossRefGoogle ScholarPubMed
Jesionowski, T., Zdarta, J., Krajewska, B. Enzyme immobilization by adsorption: A review Adsorption 2014 20 801821 10.1007/s10450-014-9623-yCrossRefGoogle Scholar
Johnson, K. A., Goody, R. S. The original Michaelis constant: Translation of the 1913 Michaelis−Menten paper Biochemistry 2011 50 82648269 10.1021/bi201284uCrossRefGoogle Scholar
Kamat, S. S., Raushel, F. M. The enzymatic conversion of phosphonates to phosphate by bacteria Current Opinion in Chemical Biology 2013 17 589596 10.1016/j.cbpa.2013.06.006CrossRefGoogle ScholarPubMed
Kehler, A., Haygarth, P., Tamburini, F., Blackwell, M. Cycling of reduced phosphorus compounds in soil and potential impacts of climate change European Journal of Soil Science 2021 72 25172537 10.1111/ejss.13121CrossRefGoogle Scholar
Kelleher, B. P., Willeford, K. O., Simpson, A. J., Simpson, M. J., Stout, R., Rafferty, A., Kingery, W. L. Acid phosphatase interactions with organo-mineral complexes: Influence on catalytic activity Biogeochemistry 2004 71 285297 10.1023/B:BIOG.0000049348.53070.6fCrossRefGoogle Scholar
Kim, E. E., Wyckoff, H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis Journal of Molecular Biology 1991 218 449464 10.1016/0022-2836(91)90724-KCrossRefGoogle ScholarPubMed
Kim, Y. O., Kim, H. K., Bae, K. S., Yu, J. H., Oh, T. K. Purification and properties of a thermostable phytase from Bacillus sp. DS11 Enzyme and Microbial Technology 1998 22 27 10.1016/S0141-0229(97)00096-3CrossRefGoogle Scholar
Kome, G. K., Enang, R. K., Tabi, F. O., Yerima, BPK Influence of clay minerals on some soil fertility attributes: A review Open Journal of Soil Science 2019 9 155188 10.4236/ojss.2019.99010CrossRefGoogle Scholar
Kovács, J., Farics, É, Szabó, P., Sajó, I. Fe-Al phosphate microcrystals in pedogenic goethite pisoliths Minerals 2020 10 114 10.3390/min10040357CrossRefGoogle Scholar
Lehmann, J., Lehmann, J., Lilienfein, J., Rebel, K., do Carmo Lima, S., Wilcke, W. Subsoil retention of organic and inorganic nitrogen in a Brazilian savanna Oxisol Soil Use and Management 2004 20 163172 10.1079/SUM2004240CrossRefGoogle Scholar
Leprince, F., Quiquampoix, H. Extracellular enzyme activity in soil: Effect of pH and ionic strength on the interaction with montmorillonite of two acid phosphatases secreted by the ectomycorrhizal fungus Hebeloma cylindrosporum European Journal of Soil Science 1996 47 511522 10.1111/j.1365-2389.1996.tb01851.xCrossRefGoogle Scholar
Li, J., Xu, Y. Effects of clay combined with moisture management on Cd immobilization and fertility index of polluted rice field Ecotoxicology and Environmental Safety 2018 158 182186 10.1016/j.ecoenv.2018.04.031CrossRefGoogle ScholarPubMed
Liu, Q., Loganathan, P., Hedley, M. J., Skinner, M. F. The mobilisation and fate of soil and rock phosphate in the rhizosphere of ectomycorrhizal Pinus radiata seedlings in an Allophanic soil Plant and Soil 2004 264 219229 10.1023/B:PLSO.0000047758.77661.57CrossRefGoogle Scholar
Liu, P., Cai, Z., Chen, Z., Mo, X., Ding, X., Liang, C., Liu, G., Tian, J. A root-associated purple acid phosphatase, SgPAP23, mediates extracellular phytate-P utilization in Stylosanthes guianensis Plant Cell and Environment 2018 41 28212834 10.1111/pce.13412CrossRefGoogle ScholarPubMed
Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., Azzazy, HME Enzyme immobilization technologies and industrial applications ACS Omega 2023 8 51845196 10.1021/acsomega.2c07560CrossRefGoogle ScholarPubMed
Makboul, H. E., Ottow, JCG Alkaline phosphatase activity and Michaelis constant in the presence of different clay minerals Soil Science 1979 128 129135 10.1097/00010694-197909000-00001CrossRefGoogle Scholar
Mamo, M., Taylor, R. W., Shuford, J. W. Ammonium fixation by soil and pure clay minerals Communications in Soil Science and Plant Analysis 1993 24 11151126 10.1080/00103629309368864CrossRefGoogle Scholar
Mao, L., Tang, D., Feng, H., Gao, Y., Zhou, P., Xu, L., Wang, L. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination Environmental Science and Pollution Research 2015 22 1986019869 10.1007/s11356-015-5220-1CrossRefGoogle ScholarPubMed
Margalef, O., Sardans, J., Fernández-Martínez, M., Molowny-Horas, R., Janssens, I. A., Ciais, P., Goll, D., Richter, A., Obersteiner, M., Asensio, D., Peñuelas, J. Global patterns of phosphatase activity in natural soils Scientific Reports 2017 7 1337 10.1038/s41598-017-01418-8CrossRefGoogle ScholarPubMed
Masaphy, S., Fahima, T., Levanon, D., Henis, Y., Mingelgrin, U. Parathion degradation by Xanthomonas sp. and Its crude enzyme extract in clay suspensions Journal of Environmental Quality 1996 25 12481255 10.2134/jeq1996.00472425002500060012xCrossRefGoogle Scholar
McBride, M. B. Dixon, B., Weed, S. B. Surface chemistry of soil minerals Minerals in soil environments 1989 Soil Science Society of America, Inc. 3588Google Scholar
McConnell, C. A., Kaye, J. P., Kemanian, A. R. Reviews and syntheses: Ironing out wrinkles in the soil phosphorus cycling paradigm Biogeosciences 2020 17 53095333 10.5194/bg-17-5309-2020CrossRefGoogle Scholar
Meng, D., Jiang, W., Li, J., Huang, L., Zhai, L., Zhang, L., Guan, Z., Cai, Y., Xiangru, L. An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad-spectrum organophosphorus pesticides Journal of Environmental Science and Health, Part B 2019 54 336343 10.1080/03601234.2019.1571363CrossRefGoogle ScholarPubMed
Mousavi, S. M., Hashemi, S. A., Iman, MSM, Ravan, N., Gholami, A., Lai, C. W., Chiang, W. H., Omidifar, N., Yousefi, K., Behbudi, G. Recent advances in enzymes for the bioremediation of pollutants Biochemistry Research International 2021 2021 5599204 10.1155/2021/5599204CrossRefGoogle ScholarPubMed
Naidja, A., Huang, P. M., Bollag, J. M. Enzyme-clay interactions and their impact on transformations of natural and anthropogenic organic compounds in soil Journal of Environmental Quality 2000 29 677691 10.2134/jeq2000.00472425002900030002xCrossRefGoogle Scholar
Nannipieri, P., Giagnoni, L., Landi, L., Renella, G. Bünemann, E., Oberson, A., Frossard, E. Role of phosphatase enzymes in soil Phosphorus in action: Biological processes in soil phosphorus cycling 2011 26 Springer Berlin 215243 10.1007/978-3-642-15271-9_9CrossRefGoogle Scholar
Nasrabadi, G. R., Greiner, R., Yamchi, A., Nourzadeh Roshan, E. A novel purple acid phytase from an earthworm cast bacterium Journal of the Science of Food and Agriculture 2018 98 36673674 10.1002/jsfa.8845CrossRefGoogle Scholar
Norde, W. My voyage of discovery to proteins in flatland …and beyond Colloids and Surfaces B: Biointerfaces 2008 61 19 10.1016/j.colsurfb.2007.09.029CrossRefGoogle ScholarPubMed
Odom, I. E. Smectite clay minerals: Properties and uses Philosophical Transactions of the Royal Society of London 1984 311 391409 10.1098/rsta.1984.0036Google Scholar
Oh, B. C., Choi, W. C., Park, S., Kim, Y. O., Oh, T. K. Biochemical properties and substrate specificities of alkaline and histidine acid phytases Applied Microbiology and Biotechnology 2004 63 362372 10.1007/s00253-003-1345-0CrossRefGoogle ScholarPubMed
Olagoke, F. K., Kalbitz, K., Vogel, C. Control of soil extracellular enzyme activities by clay minerals — perspectives on microbial responses Soil Systems 2019 3 116 10.3390/soilsystems3040064CrossRefGoogle Scholar
Oliverio, A. M., Bissett, A., McGuire, K., Saltonstall, K., Turner, B. L., Fierer, N. The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities American Society for Microbiology 2020 11 e01718e1720Google ScholarPubMed
Ostanin, K., Harms, E. H., Stevis, P. E., Kuciel, R., Zhou, M., Van Ettene, R. L. Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase The Journal of Biological Chmistry 1992 267 2283022836 10.1016/S0021-9258(18)50022-3CrossRefGoogle ScholarPubMed
Paul, R., Datta, S. C., Bera, T., Math, M. K., Bhattacharyya, R., Dahuja, A. Interaction of phosphatase with soil nanoclays: Kinetics, thermodynamics and activities Geoderma 2022 409 115654 10.1016/j.geoderma.2021.115654CrossRefGoogle Scholar
Quiquampiox, H., Mousain, D. Turner, B. L., Frossard, E., Baldwin, D. S. Enzymatic hydrolysis of organic phosphorus Organic phosphorus in the environment 2005 CAB International 89112 10.1079/9780851998220.0089CrossRefGoogle Scholar
Quiquampoix, H., Abadie, J., Baron, M. H., Leprince, F., Matumoto-Pintro, P. T., Ratcliffe, R. G., Staunton, S. Horbett, T. A., Brash, J. L. Mechanisms and consequences of protein adsorption on soil mineral surfaces Proteins at interfaces II: Fundamentals and applications 1995 American Chemical Society 321333 10.1021/bk-1995-0602.ch023CrossRefGoogle Scholar
Rao, M. A., Violante, A., Gianfreda, L. Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: Kinetics and stability Soil Biology and Biochemistry 2000 32 10071014 10.1016/S0038-0717(00)00010-9CrossRefGoogle Scholar
Reardon, P. N., Chacon, S. S., Walter, E. D., Bowden, M. E., Washton, N. M., Kleber, M. Abiotic Protein fragmentation by manganese oxide: Implications for a mechanism to supply soil biota with oligopeptides Environmental Science & Technology 2016 50 34863493 10.1021/acs.est.5b04622CrossRefGoogle ScholarPubMed
Redel, Y., Cartes, P., Velásquez, G., Poblete-Grant, P., Poblete-Grant, P., Bol, R., Mora, M. L. Assessment of phosphorus status influenced by Al and Fe compounds in volcanic grassland soils Journal of Soil Science and Plant Nutrition 2016 16 490506Google Scholar
Rejsek, K., Vranova, V., Pavelka, M., Formanek, P. Acid phosphomonoesterase (E.C. 3.1.3.2) location in soil Journal of Plant Nutrition and Soil Science 2012 175 196211 10.1002/jpln.201000139CrossRefGoogle Scholar
Richardson, A. E., Lynch, J. P., Ryan, P. R., Delhaize, E., Smith, F. A., Smith, S. E., Harvey, P. R., Ryan, M. H., Veneklaas, E. J., Lambers, H., Oberson, A., Culvenor, R. A., Simpson, R. J. Plant and microbial strategies to improve the phosphorus efficiency of agriculture Plant and Soil 2011 349 121156 10.1007/s11104-011-0950-4CrossRefGoogle Scholar
Rocha, JHT, Menegale, MLC, Rodrigues, M., de M Gonçalves, J. L., Pavinato, P. S., Foltran, E. C., Harrison, R., James, J. N. Impacts of timber harvest intensity and P fertilizer application on soil P fractions Forest Ecology and Management 2019 437 295303 10.1016/j.foreco.2019.01.051CrossRefGoogle Scholar
Rodríguez, R. F. Structure-function studies of a purple acid phytase 2018 University of East AngliaGoogle Scholar
Rodríguez, H., Fraga, R., Gonzalez, T., Bashan, Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria Plant and Soil 2006 287 1521 10.1007/s11104-006-9056-9CrossRefGoogle Scholar
Rosas, A., Luz Mora, M., Jara, A. A., López, R., Rao, M. A., Gianfreda, L. Catalytic behaviour of acid phosphatase immobilized on natural supports in the presence of manganese or molybdenum Geoderma 2008 145 7783 10.1016/j.geoderma.2008.02.008CrossRefGoogle Scholar
Roth, C. M., Lenhoff, A. M. Electrostatic and van der Waals contributions to protein adsorption: Comparison of theory and experiment Langmuir 1995 11 35003509 10.1021/la00009a036CrossRefGoogle Scholar
Ruggiero, P., Sarkar, J. M., Bollag, J. M. Detoxification of 2,4-dichlorophenol by a laccase immobilized on soil or clay Soil Science 1989 147 361370 10.1097/00010694-198905000-00007CrossRefGoogle Scholar
Sarkar, J. M., Leonowicz, A. Immobilization of enzymes on clays and soils Soil Biology and Biochemistry 1989 21 223230 10.1016/0038-0717(89)90098-9CrossRefGoogle Scholar
Schaap, K. J., Fuchslueger, L., Hoosbeek, M. R., Hofhansl, F., Martins, N. P., Valverde-Barrantes, O. J., Hartley, I. P., Lugli, L. F., Quesada, C. A. Litter inputs and phosphatase activity affect the temporal variability of organic phosphorus in a tropical forest soil in the Central Amazon Plant and Soil 2021 469 423441 10.1007/s11104-021-05146-xCrossRefGoogle Scholar
Schmidt, M. P., Martínez, C. E. Kinetic and conformational insights of protein adsorption onto montmorillonite revealed using in situ ATR-FTIR/2D-COS Langmuir 2016 32 77197729 10.1021/acs.langmuir.6b00786CrossRefGoogle ScholarPubMed
Sedaghat, M. E., Ghiaci, M., Aghaei, H., Soleimanian-zad, S. Enzyme immobilization. Part 4 . Immobilization of alkaline phosphatase on Na-sepiolite and modi fi ed sepiolite Applied Clay Science 2009 46 131135 10.1016/j.clay.2009.07.021CrossRefGoogle Scholar
Sepelyak, R. J., Feldkamp, J. R., Moody, T. E., White, J. L., Hem, S. L. Adsorption of pepsin by aluminum hydroxide I: Adsorption mechanism Journal of Pharmaceutical Sciences 1984 73 15141517 10.1002/jps.2600731104Google ScholarPubMed
Shin, S., Ha, N. C., Oh, B. C., Oh, T. K., Oh, B. H. Enzyme mechanism and catalytic property of β propeller phytase Structure 2001 9 851858 10.1016/S0969-2126(01)00637-2CrossRefGoogle ScholarPubMed
Shindo, H., Watanabe, D., Onaga, T., Urakawa, M., Nakahara, O., Huang, Q. Adsorption, activity, and kinetics of acid phosphatase as influenced by selected oxides and clay minerals Soil Science and Plant Nutrition 2002 48 763767 10.1080/00380768.2002.10409268CrossRefGoogle Scholar
Shirvani, M., Khalili, B., Kalbasi, M., Shariatmadari, H., Nourbakhsh, F. Adsorption of alkaline phosphatases on palygorskite and sepiolite: A tradeoff between enzyme protection and inhibition Clays and Clay Minerals 2020 68 287295 10.1007/s42860-020-00066-wCrossRefGoogle Scholar
Sims, J. T., Sharpley, A. N. Phosphorus: Agriculture and the environment 2005 American Society of Agronomy 10.2134/agronmonogr46CrossRefGoogle Scholar
Somu, P., Narayanasamy, S., Gomez, L. A., Rajendran, S., Lee, Y. R., Balakrishnan, D. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy Environmental Research 2022 212 113411 10.1016/j.envres.2022.113411CrossRefGoogle ScholarPubMed
Sparks, D. L. (2003). Sorption phenomena on soils. In Sparks, D. L. (ed.), Environmental soil chemistry (pp. 133186). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Sposito, G. The surface chemistry of soils 1984 Oxford University Press, Inc.Google Scholar
Staunton, S., Quiquampoix, H. Adsorption and conformation of bovine serum albumin on montmorillonite: Modification of the balance between hydrophobic and electrostatic interactions by protein methylation and pH variation Journal of Colloid and Interface Science 1994 166 8994 10.1006/jcis.1994.1274CrossRefGoogle Scholar
Stec, B., Holtz, K. M., Kantrowitz, E. R. A revised mechanism for the alkaline phosphatase reaction involving three metal ions Journal of Molecular Biology 2000 299 13031311 10.1006/jmbi.2000.3799CrossRefGoogle ScholarPubMed
Stosiek, N., Talma, M., Klimek-ochab, M. Carbon-Phosphorus Lyase — the state of the art Applied Biochemistry and Biotechnology 2020 190 15251552 10.1007/s12010-019-03161-4CrossRefGoogle ScholarPubMed
Stotzky, G. Huang, P. M., Schnitzer, M. Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses Interactions of soil minerals with natural organics and microbes 1986 Soil Science Society of America 305428Google Scholar
Sumner, M. E. Handbook of soil sciences: Properties and processes 2000 CRC PressGoogle Scholar
Tan, X., He, Y., Wang, Z., Li, C., Kong, L., Tian, H., Shen, W., Megharaj, M., He, W. Soil mineral alters the effect of Cd on the alkaline phosphatase activity Ecotoxicology and Environmental Safety 2018 161 7884 10.1016/j.ecoenv.2018.05.069CrossRefGoogle ScholarPubMed
Tang, X., Shen, Y., Suib, S. L., Coughlin, R. W., Vinopal, R. Immobilization of alkaline phosphatase on protamine-intercalated bentonite Microporous Materials 1993 2 6571 10.1016/0927-6513(93)80063-ZCrossRefGoogle Scholar
Tapia-Torres, Y., Rodríguez-torres, M. D., Elser, J. J., Islas, A., Souza, V., García-Oliva, F., Olmedo-Álvarez, G. How to live with phosphorus scarcity in soil and sediment: Lessons from bacteria Applied and Environmental Microbiology 2016 82 46524662 10.1128/AEM.00160-16CrossRefGoogle ScholarPubMed
Tarafdar, J. C., Jungk, A. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus Biology and Fertility of Soils 1987 3 199204 10.1007/BF00640630CrossRefGoogle Scholar
Tarafdar, J. C., Yadav, R. S., Meena, S. C. Comparative efficiency of acid phosphatase originated from plant and fungal sources Journal of Plant Nutrition and Soil Science 2001 164 279282 10.1002/1522-2624(200106)164:3<279::AID-JPLN279>3.0.CO;2-L3.0.CO;2-L>CrossRefGoogle Scholar
Ternan, N. G., Mc Grath, J. W., Mc Mullan, G., Quinn, J. P. Review: Organophosphonates: Occurrence, synthesis and biodegradation by microorganisms World Journal of Microbiology and Biotechnology 1998 14 635647 10.1023/A:1008848401799CrossRefGoogle Scholar
Theng, B. K. G. (2012) Proteins and enzymes. In Formation and properties of clay-polymer complexes (pp. 245318). 2nd edition. Elsevier B.V.CrossRefGoogle Scholar
Tian, H., Zhao, Y., Megharaj, M., He, W. Arsenate inhibition on kinetic characteristics of alkaline phosphatase as influenced by pH Ecological Indicators 2018 85 11011106 10.1016/j.ecolind.2017.11.041CrossRefGoogle Scholar
Tiessen, H., Stewart, JWB, Cole, C. V. Pathways of phosphorus transformations in soils of differing pedogenesis Soil Science Society of America Journal 1984 48 853858 10.2136/sssaj1984.03615995004800040031xCrossRefGoogle Scholar
Tietjen, T., Wetzel, R. G. Extracellular enzyme-clay mineral complexes: Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation Aquatic Ecology 2003 37 331339 10.1023/B:AECO.0000007044.52801.6bCrossRefGoogle Scholar
Turner, B. L., Condron, L. M. Pedogenesis, nutrient dynamics, and ecosystem development: The legacy of T.W. Walker and J.K. Syers Plant and Soil 2013 367 110 10.1007/s11104-013-1750-9CrossRefGoogle Scholar
Turner, B. L., Richardson, A. E., Mullaney, E. J. Inositol phosphates: Linking agriculture and the environment 2007 CAB International 10.1079/9781845931520.0000CrossRefGoogle Scholar
Turner, B. L., Lambers, H., Condron, L. M., Cramer, M. D., Leake, J. R., Richardson, A. E., Smith, S. E. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development Plant and Soil 2013 367 225234 10.1007/s11104-012-1493-zCrossRefGoogle Scholar
Ullah, AHJ, Cummins, B. J., Dischinger, H. C. Cyclohexanedione modification of arginine at the active site of Aspergillusficuum phytase Biochemical and Biophysical Research Communications 1991 178 4553 10.1016/0006-291X(91)91777-ACrossRefGoogle ScholarPubMed
Ustunol, I. B., Coward, E. K., Quirk, E., Grassian, V. H. Interaction of beta-lactoglobulin and bovine serum albumin with iron oxide (α-Fe2O3) nanoparticles in the presence and absence of pre-adsorbed phosphate Environmental Science: Nano 2021 8 28112823Google Scholar
Vance, C. P., Uhde-Stone, C., Allan, D. L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource New Phytologist 2003 157 423447 10.1046/j.1469-8137.2003.00695.xCrossRefGoogle ScholarPubMed
Vincent, J. B., Crowder, M. W., Averill, B. A. Hydrolysis of phosphate monoesters: A biological problem with multiple chemical solutions Trends in Biochemical Sciences 1992 17 105110 10.1016/0968-0004(92)90246-6CrossRefGoogle ScholarPubMed
Wackett, L. P., Shames, S. L., Venditti, C. P., Walsh, C. T. Bacterial carbon-phosphorus lyase: Products, rates, and regulation of phosphonic and phosphinic acid metabolism Journal of Bacteriology 1987 169 710717 10.1128/jb.169.2.710-717.1987CrossRefGoogle ScholarPubMed
Wang, P. Nanoscale biocatalyst systems Current Opinion in Biotechnology 2006 17 574579 10.1016/j.copbio.2006.10.009CrossRefGoogle ScholarPubMed
Wang, S., Liang, X., Chen, Y., Luo, Q., Liang, W., Li, S., Huang, C., Li, Z., Wan, L., Li, W., Shao, X. Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosystems Soil Science Society of America Journal 2012 76 161167 10.2136/sssaj2011.0078CrossRefGoogle Scholar
Wang, Z. Q., Li, Y. B., Tan, X. P., He, W. X., Xie, W., Megharaj, M., Wei, G. H. Effect of arsenate contamination on free, immobilized and soil alkaline phosphatases: Activity, kinetics and thermodynamics European Journal of Soil Science 2017 68 126135 10.1111/ejss.12397CrossRefGoogle Scholar
Wang, Y., Xie, H., Zhang, L., Wang, C. Restrictions of weathering on phosphorus migration and enrichment of the lower Cambrian phosphorus-bearing rock series in eastern Guizhou ACS Omega 2023 8 98159831 10.1021/acsomega.2c06160CrossRefGoogle ScholarPubMed
Wei, S., Dai, Y., Duan, Q., Liu, B., Yuan, H. A global soil data set for earth system modeling Journal of Advances in Modeling Earth Systems 2014 6 249263 10.1002/2013MS000293Google Scholar
White, A. K., Metcalf, W. W. Microbial metabolism of reduced phosphorus compounds Annual Review of Microbiology 2007 61 379400 10.1146/annurev.micro.61.080706.093357CrossRefGoogle ScholarPubMed
Yang, Z. X., Liu, S. Q., Zheng, D. W., Feng, S. D. Effects of cadium, zinc and lead on soil enzyme activities Journal of Environmental Sciences 2006 18 11351141 10.1016/S1001-0742(06)60051-XCrossRefGoogle ScholarPubMed
Yanke, L. J., Selinger, L. B., Cheng, K. J. Phytase activity of Selenomonas ruminantium: A preliminary characterization Letters in Applied Microbiology 1999 29 2025 10.1046/j.1365-2672.1999.00568.xCrossRefGoogle Scholar
Yu, S., He, Z. L., Stoffella, P. J., Calvert, D. V., Yang, X. E., Banks, D. J., Baligar, V. C. Surface runoff phosphorus (P) loss in relation to phosphatase activity and soil P fractions in Florida sandy soils under citrus production Soil Biology and Biochemistry 2006 38 619628 10.1016/j.soilbio.2005.02.040CrossRefGoogle Scholar
Zhang, W., Tang, X., Feng, X., Wang, E., Li, H., Shen, J., Zhang, F. Management strategies to optimize soil phosphorus utilization and alleviate environmental risk in China Journal of Environmental Quality 2019 48 11671175 10.2134/jeq2019.02.0054CrossRefGoogle ScholarPubMed
Zhu, J., Huang, Q., Pigna, M., Violante, A. Immobilization of acid phosphatase on uncalcined and calcined Mg/Al-CO3 layered double hydroxides Colloids and Surfaces B: Biointerfaces 2010 77 166173 10.1016/j.colsurfb.2010.01.020CrossRefGoogle Scholar
Zhu, Y., Wu, F., Feng, W., Liu, S., Giesy, J. P. Interaction of alkaline phosphatase with minerals and sediments: Activities, kinetics and hydrolysis of organic phosphorus Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016 495 4653 10.1016/j.colsurfa.2016.01.056CrossRefGoogle Scholar
Zimmerman, A. R., Ahn, M. Y. Shukla, G., Varma, A. Organo-mineral-enzyme interaction and soil enzyme activity Soil enzymology 2011 Springer 271292Google Scholar
Zou, X., Binkley, D., Caldwell, B. A. Effects of dinitrogen-fixing trees on phosphorus biogeochemical cycling in contrasting forests Soil Science Society of America Journal 1995 59 14521458 10.2136/sssaj1995.03615995005900050035xCrossRefGoogle Scholar