Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T17:12:57.173Z Has data issue: false hasContentIssue false

Physicochemical Variation of Clay Minerals and Enrichment of Rare Earth Elements in Regolith-hosted Deposits: Exemplification from The Bankeng Deposit in South China

Published online by Cambridge University Press:  01 January 2024

Martin Yan Hei Li*
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China
Mei-Fu Zhou
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China School of Earth Resources, China University of Geosciences, Wuhan 430074, China

Abstract

The wide application of rare earth elements (REEs) in the development of a carbon–neutral society has urged resource exploration worldwide in recent years. Regolith-hosted REE deposits are a major source of global REE supply and are hosted mostly in clay minerals. Nonetheless, the ways in which changes in the physicochemical properties of clay minerals during weathering affect the concentrations of REEs in the regolith are not well known. In the current study, a world-class regolith-hosted REE deposit (Bankeng, South China) has been studied to illustrate further the effect of clay minerals on sorption and fractionation of REEs during weathering to form economic deposits. In the weathering profile, halloysite and illite are abundant in the saprolite due to weathering of feldspars and biotite from the bedrock. During weathering, halloysite and illite transform gradually to kaolinite and vermiculite. The large specific surface area, pore volume, and cation exchange capacity of the clay mineral assemblages are favorable to the sorption of REEs, probably because of the formation of vermiculite. The abundance of vermiculite could explain the enrichment of REEs in the upper part of the lower pedolith. For the saprolite-pedolith interface, halloysite is probably the main sorbent for the REEs, as indicated by the distinctive appearance of pore sizes of 2.4–2.8 nm characteristic of halloysite. The progressive transformation of halloysite to kaolinite reduces the pores and desorbs the REEs, causing REE depletion in the shallower soils. As a result, REEs were mobilized downward and re-sorbed in the lower pedolith-upper saprolite causing gradual enrichment and formation of these regolith-hosted deposits.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: W. Crawford Elliott.

References

Alshameri, A.He, H.Xin, C.Zhu, J.Xinghu, W.Zhu, R.Wang, H.Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: Adsorption operative parameters Hydrometallurgy 2019 185 14916110.1016/j.hydromet.2019.02.016CrossRefGoogle Scholar
Aylmore, L.Sills, I.Quirk, J.Surface area of homoionic illite and montmorillonite clay minerals as measured by the sorption of nitrogen and carbon dioxide Clays and Clay Minerals 1970 18 919610.1346/CCMN.1970.0180204CrossRefGoogle Scholar
Barrett, E. P.Joyner, L. G.Halenda, P. P.The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms Journal of the American Chemical Society 1951 73 37338010.1021/ja01145a126CrossRefGoogle Scholar
Berger, A.Janots, E.Gnos, E.Frei, R.Bernier, F.Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar Applied Geochemistry 2014 41 21822810.1016/j.apgeochem.2013.12.013CrossRefGoogle Scholar
Borst, A. M.Smith, M. P.Finch, A. A.Estrade, G.Villanova-de-Benavent, C.Nason, P.Marquis, E.Horsburgh, N. J.Goodenough, K. M.Xu, C.Adsorption of rare earth elements in regolith-hosted clay deposits Nature Communications 2020 11 11510.1038/s41467-020-17801-5CrossRefGoogle ScholarPubMed
Bradbury, M.Baeyens, B.Sorption of Eu on Na-and Ca-montmorillonites: Experimental investigations and modelling with cation exchange and surface complexation Geochimica et Cosmochimica Acta 2002 66 2325233410.1016/S0016-7037(02)00841-4CrossRefGoogle Scholar
Braun, J-JPagel, M.Muller, J-PBilong, P.Michard, A.Guillet, B.Cerium anomalies in lateritic profiles Geochimica et Cosmochimica Acta 1990 54 78179510.1016/0016-7037(90)90373-SCrossRefGoogle Scholar
Carter, D.Heilman, M.Gonzales, C.Ethylene glycol monoethyl ether for determining surface area of silicate minerals Soil Science 1965 100 35636010.1097/00010694-196511000-00011CrossRefGoogle Scholar
Churchman, G.Davy, T.Aylmore, L.Gilkes, R.Self, P.Characteristics of fine pores in some halloysites Clay Minerals 1995 30 899810.1180/claymin.1995.030.2.01CrossRefGoogle Scholar
Coppin, F.Berger, G.Bauer, A.Castet, S.Loubet, M.Sorption of lanthanides on smectite and kaolinite Chemical Geology 2002 182 576810.1016/S0009-2541(01)00283-2CrossRefGoogle Scholar
Darunsontaya, T.Suddhiprakarn, A.Kheoruenromne, I.Gilkes, R.Geochemical properties and the nature of kaolin and iron oxides in upland oxisols and ultisols under a tropical monsoonal climate, Thailand Thai Journal of Agricultural Science 2010 43 197215Google Scholar
Deng, Y.White, G. N.Dixon, J. B.Soil Mineralogy Laboratory Manual 2014 15Texas A&M University 201Google Scholar
Estrade, G.Marquis, E.Smith, M.Goodenough, K.Nason, P.REE concentration processes in ion adsorption deposits: Evidence from the Ambohimirahavavy alkaline complex in Madagascar Ore Geology Reviews 2019 112 10.1016/j.oregeorev.2019.103027CrossRefGoogle Scholar
Fu, W.Li, X.Feng, Y.Feng, M.Peng, Z.Yu, H.Lin, H.Chemical weathering of S-type granite and formation of rare earth element (REE)-rich regolith in South China: Critical control of lithology Chemical Geology 2019 520 335110.1016/j.chemgeo.2019.05.006CrossRefGoogle Scholar
Fu, W.Luo, P.Hu, Z.Feng, Y.Liu, L.Yang, J.Feng, M.Yu, H.Zhou, Y.Enrichment of ion-exchangeable rare earth elements by felsic volcanic rock weathering in South China: Genetic mechanism and formation preference Ore Geology Reviews 2019 114 10.1016/j.oregeorev.2019.103120CrossRefGoogle Scholar
Greenland, D. J.Mott, CJBGreenland, D. J.Hayes, MHBSurfaces of soil particlesThe chemistry of soil constituents 1978 John Wiley & Sons 321354Google Scholar
Gwenzi, W.Mangori, L.Danha, C.Chaukura, N.Dunjana, N.Sanganyado, E.Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants Science of the Total Environment 2018 636 29931310.1016/j.scitotenv.2018.04.235CrossRefGoogle ScholarPubMed
Huang, J.Tan, W.Liang, X.He, H.Ma, L.Bao, Z.Zhu, J.REE fractionation controlled by REE speciation during formation of the Renju regolith-hosted REE deposits in Guangdong province, South China Ore Geology Reviews 2021 134 10.1016/j.oregeorev.2021.104172CrossRefGoogle Scholar
Johannesson, K. H.Stetzenbach, K. J.Hodge, V. F.Lyons, W. B.Rare earth element complexation behavior in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions Earth and Planetary Science Letters 1996 139 30531910.1016/0012-821X(96)00016-7CrossRefGoogle Scholar
Joussein, E.Petit, S.Churchman, J.Theng, B.Righi, D.Delvaux, B.Halloysite clay minerals–a review Clay Minerals 2005 40 38342610.1180/0009855054040180CrossRefGoogle Scholar
Jozefaciuk, G.Effect of the size of aggregates on pore characteristics of minerals measured by mercury intrusion and water-vapor desorption techniques Clays and Clay Minerals 2009 57 58660110.1346/CCMN.2009.0570507CrossRefGoogle Scholar
Laveuf, C.Cornu, S.A review on the potentiality of rare earth elements to trace pedogenetic processes Geoderma 2009 154 11210.1016/j.geoderma.2009.10.002CrossRefGoogle Scholar
Levis, S.Deasy, P.Characterisation of halloysite for use as a microtubular drug delivery system International Journal of Pharmaceutics 2002 243 12513410.1016/S0378-5173(02)00274-0CrossRefGoogle ScholarPubMed
Li, MYHZhou, M-FThe role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits American Mineralogist 2020 105 9210810.2138/am-2020-7061CrossRefGoogle Scholar
Li, YHMZhao, W. W.Zhou, M-FNature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model Journal of Asian Earth Sciences 2017 148 659510.1016/j.jseaes.2017.08.004CrossRefGoogle Scholar
Li, MYHZhou, M-FWilliams-Jones, A. E.The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong deposit in Jiangxi province, South China Economic Geology 2019 114 54156810.5382/econgeo.4642CrossRefGoogle Scholar
Li, MYHZhou, M-FWilliams-Jones, A. E.Controls on the dynamics of rare earth elements during sub-tropical hillslope processes and formation of regolith-hosted deposits Economic Geology 2020 115 1097111810.5382/econgeo.4727CrossRefGoogle Scholar
Li, MYHTeng, F-ZZhou, M-FPhyllosilicate controls on magnesium isotopic fractionation during weathering of granites: Implications for continental weathering and riverine system Earth and Planetary Science Letters 2021 553 10.1016/j.epsl.2020.116613CrossRefGoogle Scholar
Li, MYHKwong, H. T.Williams-Jones, A. E.Zhou, M-FThe thermodynamics of rare earth element liberation, mobilization and supergene enrichment during groundwater-regolith interaction Geochimica et Cosmochimica Acta 2022 330 25827710.1016/j.gca.2021.05.002CrossRefGoogle Scholar
Mellouk, S.Cherifi, S.Sassi, M.Marouf-Khelifa, K.Bengueddach, A.Schott, J.Khelifa, A.Intercalation of halloysite from Djebel Debagh (Algeria) and adsorption of copper ions Applied Clay Science 2009 44 23023610.1016/j.clay.2009.02.008CrossRefGoogle Scholar
Mukai, H.Kon, Y.Sanematsu, K.Takahashi, Y.Ito, M.Microscopic analyses of weathered granite in ion-adsorption rare earth deposit of Jianxi province, China Scientific Reports 2020 10 11110.1038/s41598-020-76981-8CrossRefGoogle ScholarPubMed
Murray, H. H. & Lyons, S. C. (1960) Further correlations of kaolinite crystallinity with chemical and physical properties. Clays and Clay Minerals (p. 11–17). Elsevier.CrossRefGoogle Scholar
Nadeau, P.Wilson, M.McHardy, W.Tait, J.The conversion of smectite to illite during diagenesis: Evidence from some illitic clays from bentonites and sandstones Mineralogical Magazine 1985 49 39340010.1180/minmag.1985.049.352.10CrossRefGoogle Scholar
Pasbakhsh, P.Churchman, G. J.Keeling, J. L.Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers Applied Clay Science 2013 74 475710.1016/j.clay.2012.06.014CrossRefGoogle Scholar
Raman, K.Mortland, M.External specific surface area of vermiculite American Mineralogist: Journal of Earth and Planetary Materials 1966 51 17871792Google Scholar
Riesgo García, M. V.Krzemień, A.Manzanedo del Campo, Menéndez Álvarez, M.Gent, M. R.Rare earth elements mining investment: It is not all about China Resources Policy 2017 53 667610.1016/j.resourpol.2017.05.004CrossRefGoogle Scholar
Sanematsu, K.Watanabe, Y.Characteristics and genesis of ion-adsorption type deposits Reviews in Economic Geology 2016 18 5579Google Scholar
Sanematsu, K.Kon, Y.Imai, A.Watanabe, K.Watanabe, Y.Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand Mineralium Deposita 2013 48 43745110.1007/s00126-011-0380-5CrossRefGoogle Scholar
Shannon, R. D.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica Section a: Crystal Physics, Diffraction, Theoretical and General Crystallography 1976 32 75176710.1107/S0567739476001551CrossRefGoogle Scholar
Stumpf, T.Bauer, A.Coppin, F.Fanghänel, T.Kim, J-IInner-sphere, outer-sphere and ternary surface complexes: A TRLFS study of the sorption process of Eu (III) onto smectite and kaolinite Radiochimica Acta 2002 90 34534910.1524/ract.2002.90.6.345CrossRefGoogle Scholar
Tertre, E.Castet, S.Berger, G.Loubet, M.Giffaut, E.Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60°C: Experimental and modeling study Geochimica et Cosmochimica Acta 2006 70 4579459910.1016/j.gca.2006.07.017CrossRefGoogle Scholar
Wilson, M. (2013) Sheet silicates: Clay minerals. In W. Deer, R. Howie and J. Zussman, Eds. Rock-Forming minerals (p. 724). 3C, Geological Society.Google Scholar
Xie, Y.Hou, Z.Goldfarb, R. J.Guo, X.Wang, L.Rare Earth Element Deposits in China Reviews in Economic Geology 2016 18 115136Google Scholar
Yamaguchi, A.Honda, T.Tanaka, M.Tanaka, K.Takahashi, Y.Discovery of ion-adsorption type deposits of rare earth elements (REE) in southwest Japan with speciation of REE by extended X-ray absorption fine structure spectroscopy Geochemical Journal 2018 52 41542510.2343/geochemj.2.0531CrossRefGoogle Scholar
Yang, M.Liang, X.Ma, L.Huang, J.He, H.Zhu, J.Adsorption of rees on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite Chemical Geology 2019 525 21021710.1016/j.chemgeo.2019.07.024CrossRefGoogle Scholar
Zhang, Y.Chen, M.Li, G.Shi, C.Wang, B.Ling, Z.Exfoliated vermiculite nanosheets supporting tetraethylenepentamine for CO2 capture Results in Materials 2020 7 10.1016/j.rinma.2020.100102CrossRefGoogle Scholar